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A quick introduction
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Why do we do what we do?

• Humanities researchers can be confronted with large bodies of
text
• Obtaining a bigger picture can be difficult
• KGs can help to obtain such bigger picture
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The KG motivation

• Transform a large body of text to a graph, storing the ‘text’s
essentials’
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What is a graph?

• In many cases, a collection of triples
{(sourcei , edgei , targeti )}Ni=1

• e.g., (birds, are_capable_of , flying)
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A little ‘common sense’ graph

(bird , capable_of , flying) (plane, capable_of , flying)
(mosquito, capable_of , flying) (bird , eats,mosquito)
(mosquito, annoys, human) (mosquito, is_a, animal)
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A more visually appealing view

Figure: A more visually appealing view
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Figure: KGs are missing edges
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Figure: KGs are missing nodes
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Intermediate insight

KGs are incomplete
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Transforming historical corpora to KGs

12 / 64



Part I Part II

A bunch of historical documents

Figure: Caption
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A bunch of historical documents

Figure: Caption
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A pattern

But wait, there appears to be a simple formal pattern
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A pattern

Figure: A pattern
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A pattern

a SUBJECT (the king) does SOMETHING (e.g., grant) to
SOMEONE (e.g. church of St. Mary)
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A pattern

X to Y; Z
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A pattern

Figure: A high relation ‘weight’ can indicate a stronger relationship
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A pattern

Figure: Design choices
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Finally, we have something like this

Figure:

21 / 64



Part I Part II

Let’s get our hands dirty

• start a terminal, type ‘python’

import spacy
nlp = spacy.load(’en_core_web_sm ’)
doc = nlp(’Athelstan grants land to St. Mary\’s’)
spacy.displacy.serve(doc , style=’dep’)

open the link and discuss. Do you spot an error? Try with other sentences.
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Let’s get our hands dirty

doc = nlp(’Athelstan grants land to St. Mary\’s’)
for chunk in doc.noun_chunks:

print(chunk.text)

what do you see? What are ‘noun chunks’?
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Let’s get our hands dirty

import networkx
G = networkx.DiGraph ()
chunks = [chunk.text for chunk in doc.noun_chunks]
G.add_edge(chunks [0], chunks [2], label=chunks [1])
import matplotlib.pyplot as plt
plt.ion()
networkx.draw_networkx(G,with_labels=True)

what do you see? What have we done here?
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Excercises

1 Add two more triples to the graph
• one triple where at least one node is already in the graph
• and one triple with two new nodes

2 make sure that there is one node which is connected to every
other node

3 use networkx.info(G) and discuss the results
4 play a little bit around with the graph G (as in 1 or 2) and

observe statistical changes with 3
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End of part I

Q/A
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Part II

Let’s get our hands even more dirty!
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Figure: What do you see?
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Old Bailey corpus

• contains transcripts from historical trials in London1

• Structured and annotated
• 18th, 19th and 20th century
• 637 ‘proceedings’

1http://fedora.clarin-d.uni-saarland.de/oldbailey/index.html
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24.4 mio. spoken words!
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Old Baileys 2 KG

• aim 1: test hypotheses (e.g. were males and females differently
punished in historical London, did that change over time?)
• aim 2: explore the KG, what are centered nodes? Was there a

person sentenced multiple times, etc.?

With a KG, we can engage these and many more questions in a
very straightforward way
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Plain text vs. in-depth annotations

• What information you can use depends on...
• ... whether your data is structured (e.g.

XML/TEI-annotated) or unstructured (plain text)
• ... what language it is in and what tools there are
• ... what you want
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Intermediate insight

• In the simplest case, we start from high-quality and
extensive annoations
• In the hardest case, we start from plain text

• make out and exploit formalized patterns (e.g. the
charters we have seen)
• use automatic extraction tools, e.g. extract

subject-verb-object triples with dependency parsing
• caveat: not every language follows SVO-patterns...
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Old Baileys 2 KG

Luckily for us, the corpus has been extensively annotated by a large
research project2

2http://www1.uni-giessen.de/oldbaileycorpus/
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Design choices

We want:
• trial nodes (ids), named entity nodes (e.g., the defandant’s

name), offence nodes (e.g., theft), description nodes (e.g.
what was stolen), punishment nodes (e.g., prison)
• edges to connect trial nodes to defendants, punishments etc.
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OBC examples

Some examples...
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Extracting the defendant

<persName id="t17751206 -3-defend341" type="defendantName">
WILLIAM
CLARKE
<interp inst="t17751206 -3-defend341"
type="surname" value="CLARKE"/>
<interp inst="t17751206 -3-defend341"
type="given" value="WILLIAM"/>
<interp inst="t17751206 -3-defend341"
type="gender" value="male"/>
</persName >
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Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory"
value="grandLarceny"/>
stealing two gold and three silver watches ,
and about 80 l. in money
</rs>
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Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory"
value="grandLarceny"/>
stealing two gold and three silver watches ,
and about 80 l. in money
</rs>

What was stolen? This is more difficult to extract ... it is not annotated
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NLP to the rescue

If things are not annotated, but annoation is very desirable, we
must automatically ‘annotate’ them
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Let’s parse this text

• start a terminal, type ‘python’

import spacy
nlp = spacy.load(’en_core_web_sm ’)
doc = nlp(’stealing two gold and three silver watches ’)
spacy.displacy.serve(doc , style=’dep’)

open the link and discuss. Do you spot an error? Does it help us to see what
exactly was stolen?
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Excercise

• insert a few random empty spaces e.g.,
‘stealing two gold and three silver watches’.
• Discuss what happens

• insert: ‘on the 10th of December 1827’ between ‘stealing’ and
‘two’
• Discuss what happens
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Intermediate insight

NLP systems are a bit like ‘princesses on peas’
⇒ a super small change in the environment can easily disturb them

Figure: Princess on a pea.
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However

... sometimes it’s okay if we don’t catch everything.
• catching only the word ‘gold’ or ‘watches’
• would certainly be better than catching nothing
• and probably also better than using the full text as a

stolen-item-node
• Question: why?!
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OBC2KG

So, how do we build a KG from the OBC?
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OBC2KG

• start a terminal, type ’git clone
https://gitlab.cl.uni-heidelberg.de/born/obc2kg.git’
• type ’cd hch-kg’, then ’ls -l’
• data/ contains small subset of OBC
• output/ is used to store constructed knowledge graphs
• src/ contains scripts
• visualization/ contains visualization suite
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OBC2KG

• type ’cd src’, then ’ls -l’
• script graph_builder.py does all the heavy lifting
• iterates over data files
• extracts, for each trial, all nodes and texts

• we will only interact with main.py
• allows for invoking text simplification function from

graph_helpers.py
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OBC2KG

• type ’python main.py -h’ to show all available options

• example data contains OBC data for 1720, 1820, and 1913
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OBC2KG

• create a graph for the year 1720:
• type ’python main.py -year 1720 -output_path

“../output/example_graph_1720.json” ’
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OBC2KG: Analysis

• analyze the graph by using graph_stats.py
• type ’python graph_stats.py -general

../output/example_graph_1720.json’

• type ’python graph_stats.py -h’ to show all available options
• Exercise 1: What are the 10 most central nodes?
• Exercise 2: What is the distribution of offences?
• Exercise 3: Play around with the other categories
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OBC2KG: Analysis

• Exercise: do the same for 1820 or 1913
• compare the stats to 1720
• what differences – if any – do you see?
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OBC2KG: Analysis

• Exercise: re-run the stats script with ’-detail description’
• what do you notice?
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OBC2KG

• recall that text descriptions can be very long
• e.g. “stealing two gold and three silver watches”

• by simplifying them, we can reduce these to just the most
important words/phrases
• e.g. gold or – ideally – watches
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OBC2KG

• simplification is possible with flag ’-text_node_simplification’
of main.py
• Exercise: create two simplified graphs for one year
• one using ’-text_node_simplification

spacy_direct_object’
• the other using ’-text_node_simplification classifier’

• print the stats on descriptions for the new graphs
• what do you see?
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OBC2KG

Terminals are great and stuff, but wasn’t there a more interactive
and appealing way to look at the KGs?
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OBC2KG: Visualizations

• ’cd ../visualization’
• ’python -m http.server’
• open ’http://localhost:8000’ in your browser
• open the file browser and go to the output directory
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OBC2KG: Visualizations

• Map some node types onto each other, e.g. offence and
description
• What do you see? What kind of descriptions are

associated with the offences?
• Do the same with a graph from a different time
• How do the mappings compare?
• Did anything change?
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OBC2KG: Visualizations

• Visualizations can be a great tool to explore data in a more
intuitive way
• Looking at diverse transformations or structures of graphs,

questions can arise that were not thought about before:
• Why were verdicts for sexual offences more often not

guilty in the 18th century and more often guilty in the
20th century?
• Who were the people involved in multiple trials? Do they

have any commonalities?
• If, on the other hand, you have specific questions in mind,

coding yourself to an answer might give you more than a
visualization tool
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Addendum: plotting gender distributions over the whole
corpus

• we have prepared a stats file (gender_punishment_time.csv)
for plotting
• with it, you can plot the distribution of verdicts and

punishments per gender over time

• type ’python plot_gender.py imprison’ to generate file
imprison-gender-time.png
• open it: ’okular imprison-gender-time.png’
• what do you see?
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An example: Tracing the ‘invention’ of imprisonment as
punishment

Figure: Ratio of males and females which were sentenced to prison.
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OldBailey2KG code repository

https://gitlab.cl.uni-heidelberg.de/born/obc2kg

• caveat: code may be not free from bugs and some things may
not be modeled ideally
• if you want to build on this work and have questions, don’t

hesitate to contact us
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Contact

lastname@cl.uni-heidelberg.de
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Pointers

• visualization: https://visjs.org/
• spacy: https://spacy.io/
• networkx: https://networkx.github.io/
• KG of the Regesta Imperii [OBN18, BON18]
• Holy Roman Emperor itineraries [OBNP19]
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