
Part I Part II

Providing new views on textual data with
knowledge graphs

Workshop

Leo Born, Juri Opitz

HCH19
Ruprecht-Karls-Universität Heidelberg

July 19th 2019

1 / 64



Part I Part II

1 Part I
Introduction
Getting practical

2 Part II
The Old Bailey Corpus (OBC)
OBC2KG
OBC2KG: Analyses and Visualizations

2 / 64



Part I Part II

A quick introduction

3 / 64



Part I Part II

Why do we do what we do?

• Humanities researchers can be confronted with large bodies of
text
• Obtaining a bigger picture can be difficult
• KGs can help to obtain such bigger picture

4 / 64



Part I Part II

The KG motivation

• Transform a large body of text to a graph, storing the ‘text’s
essentials’

5 / 64



Part I Part II

What is a graph?

• In many cases, a collection of triples
{(sourcei , edgei , targeti )}Ni=1

• e.g., (birds, are_capable_of , flying)

6 / 64



Part I Part II

A little ‘common sense’ graph

(bird , capable_of , flying) (plane, capable_of , flying)
(mosquito, capable_of , flying) (bird , eats,mosquito)
(mosquito, annoys, human) (mosquito, is_a, animal)

7 / 64



Part I Part II

A more visually appealing view

Figure: A more visually appealing view

8 / 64



Part I Part II

Figure: KGs are missing edges

9 / 64



Part I Part II

Figure: KGs are missing nodes

10 / 64



Part I Part II

Intermediate insight

KGs are incomplete

11 / 64



Part I Part II

Transforming historical corpora to KGs

12 / 64



Part I Part II

A bunch of historical documents

Figure: Caption

13 / 64



Part I Part II

A bunch of historical documents

Figure: Caption

14 / 64



Part I Part II

A pattern

But wait, there appears to be a simple formal pattern

15 / 64



Part I Part II

A pattern

Figure: A pattern

16 / 64



Part I Part II

A pattern

a SUBJECT (the king) does SOMETHING (e.g., grant) to
SOMEONE (e.g. church of St. Mary)

17 / 64



Part I Part II

A pattern

X to Y; Z

18 / 64



Part I Part II

A pattern

Figure: A high relation ‘weight’ can indicate a stronger relationship

19 / 64



Part I Part II

A pattern

Figure: Design choices

20 / 64



Part I Part II

Finally, we have something like this

Figure:

21 / 64



Part I Part II

Let’s get our hands dirty

• start a terminal, type ‘python’

import spacy
nlp = spacy.load(’en_core_web_sm ’)
doc = nlp(’Athelstan grants land to St. Mary\’s’)
spacy.displacy.serve(doc , style=’dep’)

open the link and discuss. Do you spot an error? Try with other sentences.

22 / 64



Part I Part II

Let’s get our hands dirty

doc = nlp(’Athelstan grants land to St. Mary\’s’)
for chunk in doc.noun_chunks:

print(chunk.text)

what do you see? What are ‘noun chunks’?

23 / 64



Part I Part II

Let’s get our hands dirty

import networkx
G = networkx.DiGraph ()
chunks = [chunk.text for chunk in doc.noun_chunks]
G.add_edge(chunks [0], chunks [2], label=chunks [1])
import matplotlib.pyplot as plt
plt.ion()
networkx.draw_networkx(G,with_labels=True)

what do you see? What have we done here?

24 / 64



Part I Part II

Excercises

1 Add two more triples to the graph
• one triple where at least one node is already in the graph
• and one triple with two new nodes

2 make sure that there is one node which is connected to every
other node

3 use networkx.info(G) and discuss the results
4 play a little bit around with the graph G (as in 1 or 2) and

observe statistical changes with 3

25 / 64



Part I Part II

End of part I

Q/A

26 / 64



Part I Part II

Part II

Let’s get our hands even more dirty!

27 / 64



Part I Part II

Figure: What do you see?

28 / 64



Part I Part II

Old Bailey corpus

• contains transcripts from historical trials in London1

• Structured and annotated
• 18th, 19th and 20th century
• 637 ‘proceedings’

1http://fedora.clarin-d.uni-saarland.de/oldbailey/index.html
29 / 64

http://fedora.clarin-d.uni-saarland.de/oldbailey/index.html


Part I Part II

24.4 mio. spoken words!

30 / 64



Part I Part II

Old Baileys 2 KG

• aim 1: test hypotheses (e.g. were males and females differently
punished in historical London, did that change over time?)
• aim 2: explore the KG, what are centered nodes? Was there a

person sentenced multiple times, etc.?

With a KG, we can engage these and many more questions in a
very straightforward way

31 / 64



Part I Part II

Plain text vs. in-depth annotations

• What information you can use depends on...
• ... whether your data is structured (e.g.

XML/TEI-annotated) or unstructured (plain text)
• ... what language it is in and what tools there are
• ... what you want

32 / 64



Part I Part II

Intermediate insight

• In the simplest case, we start from high-quality and
extensive annoations
• In the hardest case, we start from plain text

• make out and exploit formalized patterns (e.g. the
charters we have seen)
• use automatic extraction tools, e.g. extract

subject-verb-object triples with dependency parsing
• caveat: not every language follows SVO-patterns...

33 / 64



Part I Part II

Old Baileys 2 KG

Luckily for us, the corpus has been extensively annotated by a large
research project2

2http://www1.uni-giessen.de/oldbaileycorpus/
34 / 64

http://www1.uni-giessen.de/oldbaileycorpus/


Part I Part II

Design choices

We want:
• trial nodes (ids), named entity nodes (e.g., the defandant’s

name), offence nodes (e.g., theft), description nodes (e.g.
what was stolen), punishment nodes (e.g., prison)
• edges to connect trial nodes to defendants, punishments etc.

35 / 64



Part I Part II

OBC examples

Some examples...

36 / 64



Part I Part II

Extracting the defendant

<persName id="t17751206 -3-defend341" type="defendantName">
WILLIAM
CLARKE
<interp inst="t17751206 -3-defend341"
type="surname" value="CLARKE"/>
<interp inst="t17751206 -3-defend341"
type="given" value="WILLIAM"/>
<interp inst="t17751206 -3-defend341"
type="gender" value="male"/>
</persName >

37 / 64



Part I Part II

Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory"
value="grandLarceny"/>
stealing two gold and three silver watches ,
and about 80 l. in money
</rs>

38 / 64



Part I Part II

Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory"
value="grandLarceny"/>
stealing two gold and three silver watches ,
and about 80 l. in money
</rs>

What was stolen? This is more difficult to extract ... it is not annotated

39 / 64



Part I Part II

NLP to the rescue

If things are not annotated, but annoation is very desirable, we
must automatically ‘annotate’ them

40 / 64



Part I Part II

Let’s parse this text

• start a terminal, type ‘python’

import spacy
nlp = spacy.load(’en_core_web_sm ’)
doc = nlp(’stealing two gold and three silver watches ’)
spacy.displacy.serve(doc , style=’dep’)

open the link and discuss. Do you spot an error? Does it help us to see what
exactly was stolen?

41 / 64



Part I Part II

Excercise

• insert a few random empty spaces e.g.,
‘stealing two gold and three silver watches’.
• Discuss what happens

• insert: ‘on the 10th of December 1827’ between ‘stealing’ and
‘two’
• Discuss what happens

42 / 64



Part I Part II

Intermediate insight

NLP systems are a bit like ‘princesses on peas’
⇒ a super small change in the environment can easily disturb them

Figure: Princess on a pea.
43 / 64



Part I Part II

However

... sometimes it’s okay if we don’t catch everything.
• catching only the word ‘gold’ or ‘watches’
• would certainly be better than catching nothing
• and probably also better than using the full text as a

stolen-item-node
• Question: why?!

44 / 64



Part I Part II

OBC2KG

So, how do we build a KG from the OBC?

45 / 64



Part I Part II

OBC2KG

• start a terminal, type ’git clone
https://gitlab.cl.uni-heidelberg.de/born/obc2kg.git’
• type ’cd hch-kg’, then ’ls -l’
• data/ contains small subset of OBC
• output/ is used to store constructed knowledge graphs
• src/ contains scripts
• visualization/ contains visualization suite

46 / 64



Part I Part II

OBC2KG

• type ’cd src’, then ’ls -l’
• script graph_builder.py does all the heavy lifting
• iterates over data files
• extracts, for each trial, all nodes and texts

• we will only interact with main.py
• allows for invoking text simplification function from

graph_helpers.py

47 / 64



Part I Part II

OBC2KG

• type ’python main.py -h’ to show all available options

• example data contains OBC data for 1720, 1820, and 1913

48 / 64



Part I Part II

OBC2KG

• create a graph for the year 1720:
• type ’python main.py -year 1720 -output_path

“../output/example_graph_1720.json” ’

49 / 64



Part I Part II

OBC2KG: Analysis

• analyze the graph by using graph_stats.py
• type ’python graph_stats.py -general

../output/example_graph_1720.json’

• type ’python graph_stats.py -h’ to show all available options
• Exercise 1: What are the 10 most central nodes?
• Exercise 2: What is the distribution of offences?
• Exercise 3: Play around with the other categories

50 / 64



Part I Part II

OBC2KG: Analysis

• Exercise: do the same for 1820 or 1913
• compare the stats to 1720
• what differences – if any – do you see?

51 / 64



Part I Part II

OBC2KG: Analysis

• Exercise: re-run the stats script with ’-detail description’
• what do you notice?

52 / 64



Part I Part II

OBC2KG

• recall that text descriptions can be very long
• e.g. “stealing two gold and three silver watches”

• by simplifying them, we can reduce these to just the most
important words/phrases
• e.g. gold or – ideally – watches

53 / 64



Part I Part II

OBC2KG

• simplification is possible with flag ’-text_node_simplification’
of main.py
• Exercise: create two simplified graphs for one year
• one using ’-text_node_simplification

spacy_direct_object’
• the other using ’-text_node_simplification classifier’

• print the stats on descriptions for the new graphs
• what do you see?

54 / 64



Part I Part II

OBC2KG

Terminals are great and stuff, but wasn’t there a more interactive
and appealing way to look at the KGs?

55 / 64



Part I Part II

OBC2KG: Visualizations

• ’cd ../visualization’
• ’python -m http.server’
• open ’http://localhost:8000’ in your browser
• open the file browser and go to the output directory

56 / 64



Part I Part II

OBC2KG: Visualizations

• Map some node types onto each other, e.g. offence and
description
• What do you see? What kind of descriptions are

associated with the offences?
• Do the same with a graph from a different time
• How do the mappings compare?
• Did anything change?

57 / 64



Part I Part II

OBC2KG: Visualizations

• Visualizations can be a great tool to explore data in a more
intuitive way
• Looking at diverse transformations or structures of graphs,

questions can arise that were not thought about before:
• Why were verdicts for sexual offences more often not

guilty in the 18th century and more often guilty in the
20th century?
• Who were the people involved in multiple trials? Do they

have any commonalities?
• If, on the other hand, you have specific questions in mind,

coding yourself to an answer might give you more than a
visualization tool

58 / 64



Part I Part II

Addendum: plotting gender distributions over the whole
corpus

• we have prepared a stats file (gender_punishment_time.csv)
for plotting
• with it, you can plot the distribution of verdicts and

punishments per gender over time

• type ’python plot_gender.py imprison’ to generate file
imprison-gender-time.png
• open it: ’okular imprison-gender-time.png’
• what do you see?

59 / 64



Part I Part II

An example: Tracing the ‘invention’ of imprisonment as
punishment

Figure: Ratio of males and females which were sentenced to prison.
60 / 64



Part I Part II

OldBailey2KG code repository

https://gitlab.cl.uni-heidelberg.de/born/obc2kg

• caveat: code may be not free from bugs and some things may
not be modeled ideally
• if you want to build on this work and have questions, don’t

hesitate to contact us

61 / 64

https://gitlab.cl.uni-heidelberg.de/born/obc2kg


Part I Part II

Contact

lastname@cl.uni-heidelberg.de

62 / 64



Part I Part II

Pointers

• visualization: https://visjs.org/
• spacy: https://spacy.io/
• networkx: https://networkx.github.io/
• KG of the Regesta Imperii [OBN18, BON18]
• Holy Roman Emperor itineraries [OBNP19]

63 / 64

https://visjs.org/
https://spacy.io/
https://networkx.github.io/


Part I Part II

References

Leo Born, Juri Opitz, and Vivi Nastase.
A knowledge graph from the regesta imperii: Construction, visualization
and macro-level analyses.
In Inaugural Conference of the European Association for Digital
Humanities (EADH), Galway, Ireland, 2018.

Juri Opitz, Leo Born, and Vivi Nastase.
Induction of a large-scale knowledge graph from the Regesta Imperii.
In Proceedings of the Second Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social Sciences, Humanities and
Literature, pages 159–168, Santa Fe, New Mexico, August 2018.
Association for Computational Linguistics.

Juri Opitz, Leo Born, Vivi Nastase, and Yannick Pultar.
Automatic Reconstruction of Emperor Itineraries from the Regesta
Imperii.
In Proceedings of the 3rd Conference for Digital Access to Textual
Cultural Heritage (DATeCH), Brussels, Belgium, 2019.
to appear.

64 / 64


	Part I
	Introduction
	Getting practical

	Part II
	The Old Bailey Corpus (OBC)
	OBC2KG
	OBC2KG: Analyses and Visualizations


