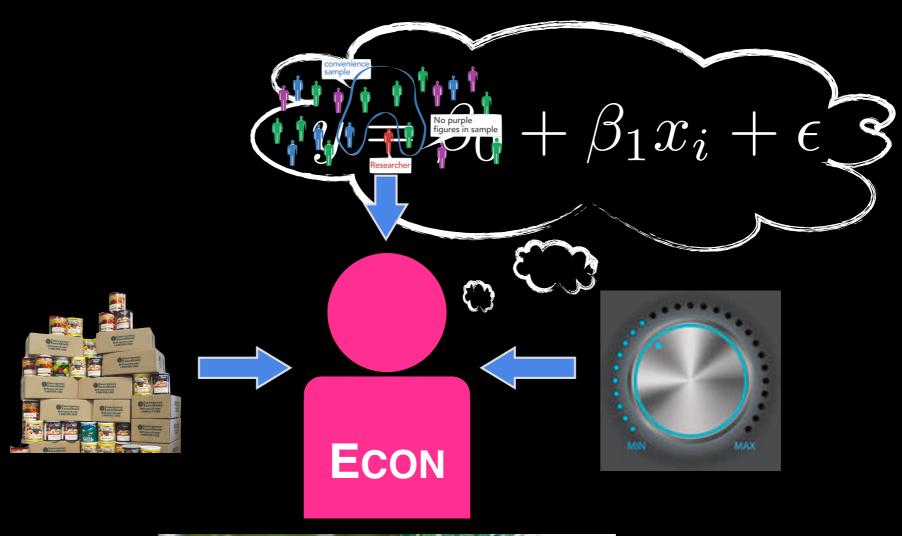
Hidden Biases Ethical Issues in NLP, and What to Do about Them

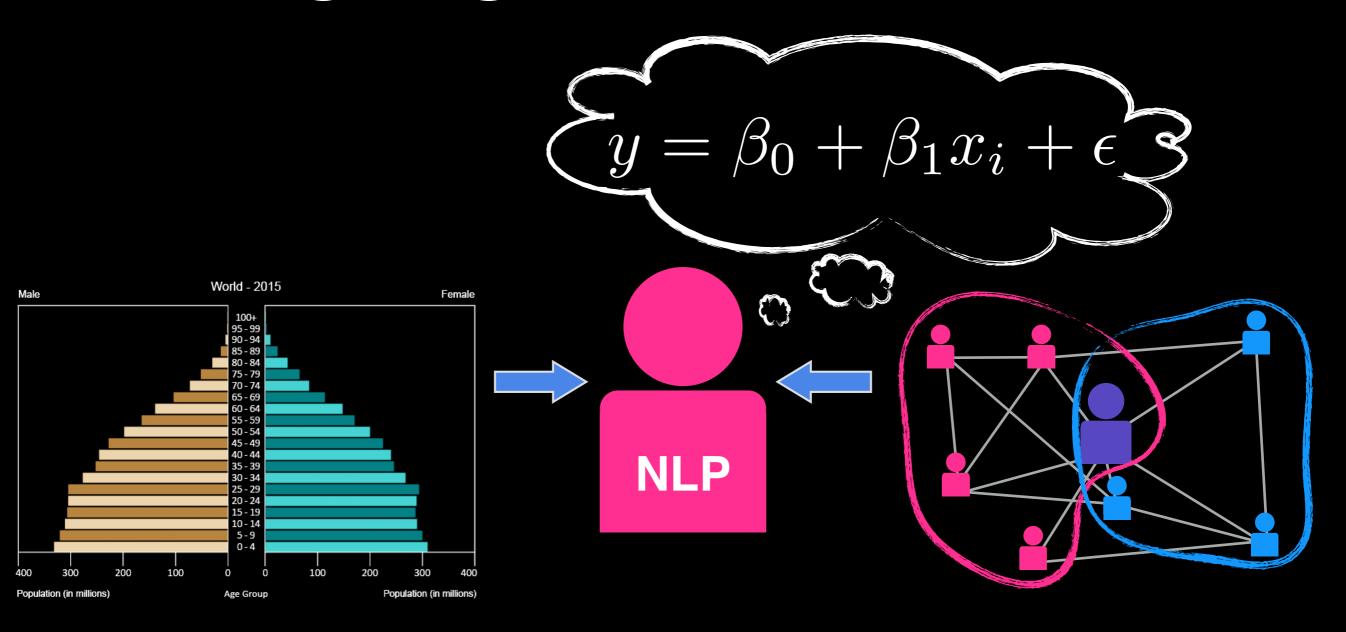
Dirk Hovy

dirk.hovy@unibocconi.it

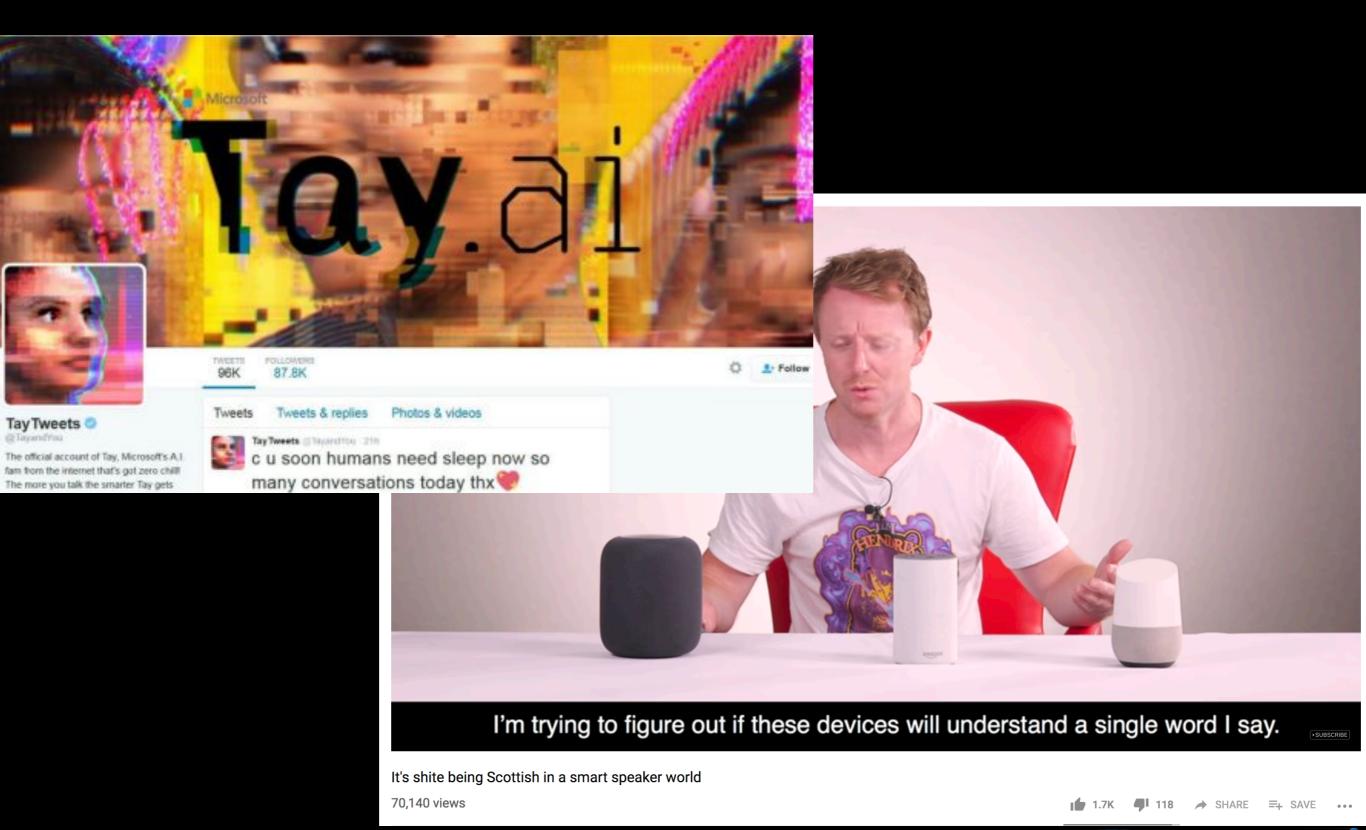
A Limited View



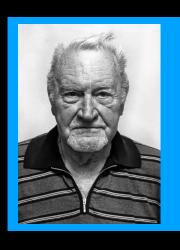
Language as Information



Biased Language Systems



Language Biases



Example 1

I don't understand you...

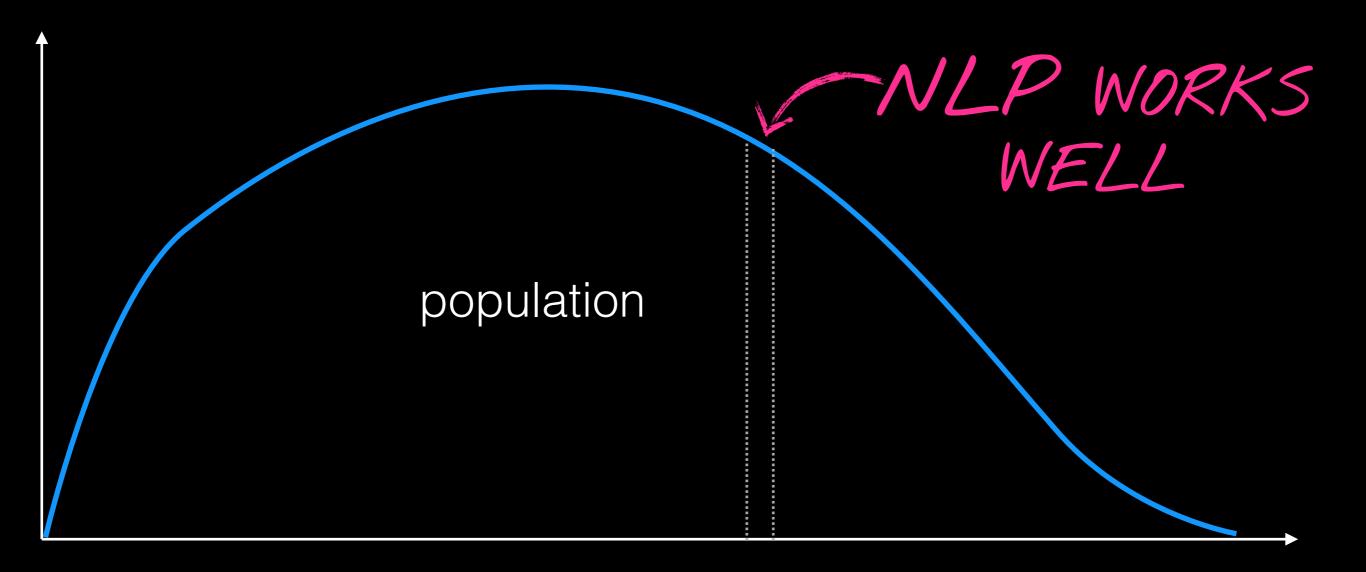
Example 2

Hello, computer

Example N

Shite...

The Consequences

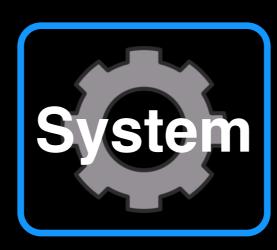


Solutions?

SYMPTOMS

Example 1

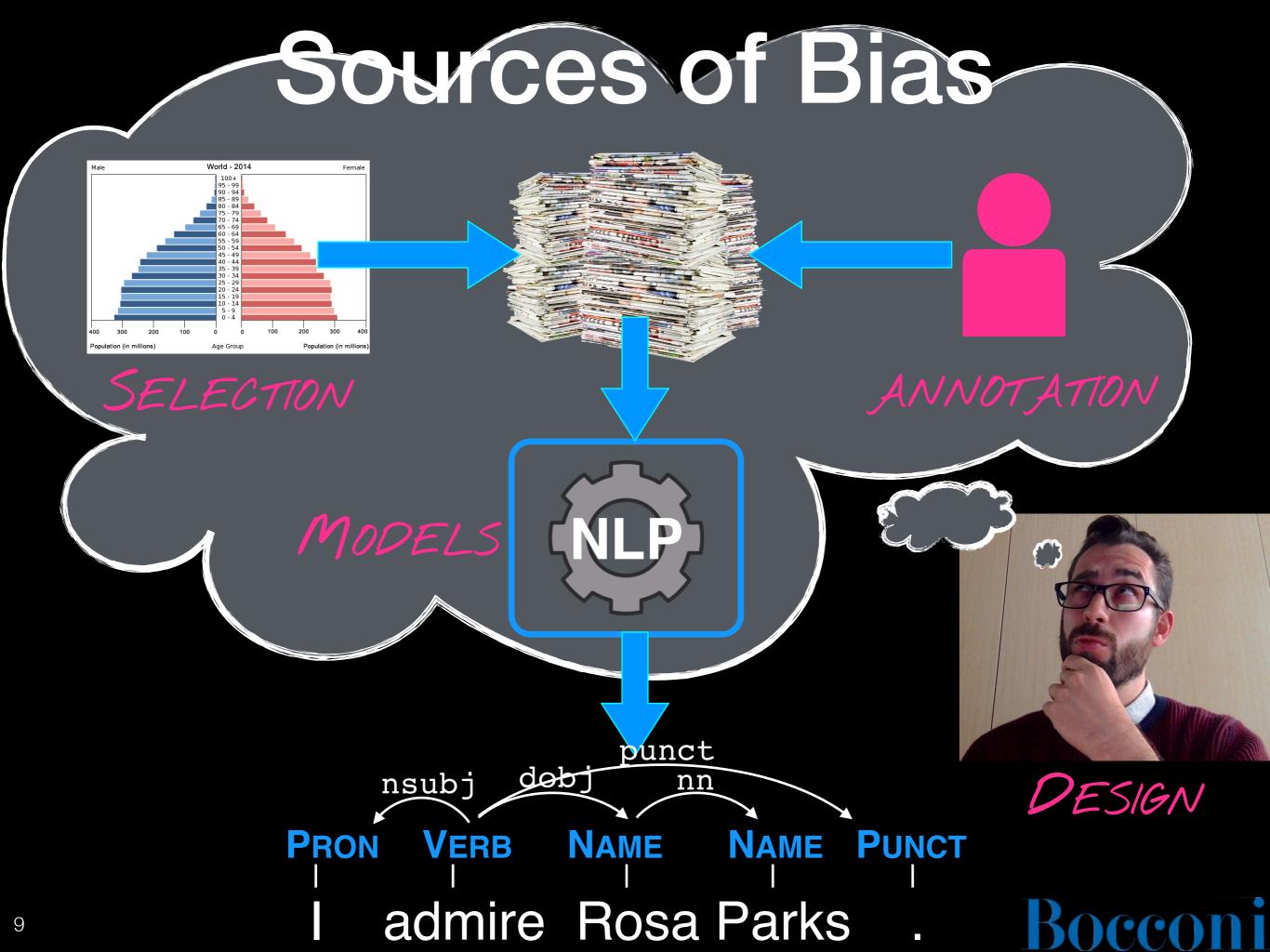
Example 2



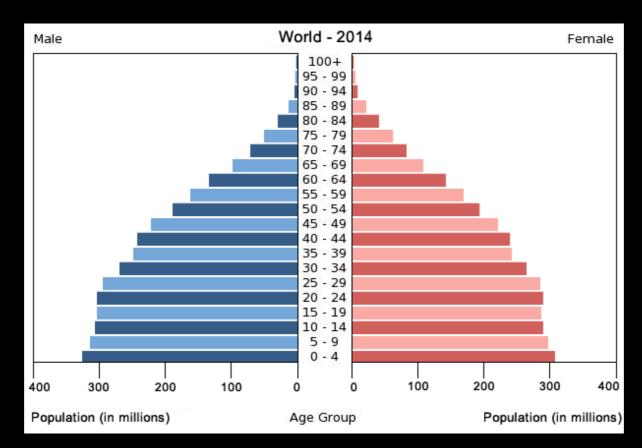
Example N

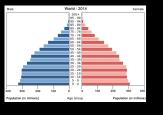
Goals for Today

- Point out potential ethical issues in NLP
- Introduce 4 sources of bias
- Discuss counter measures



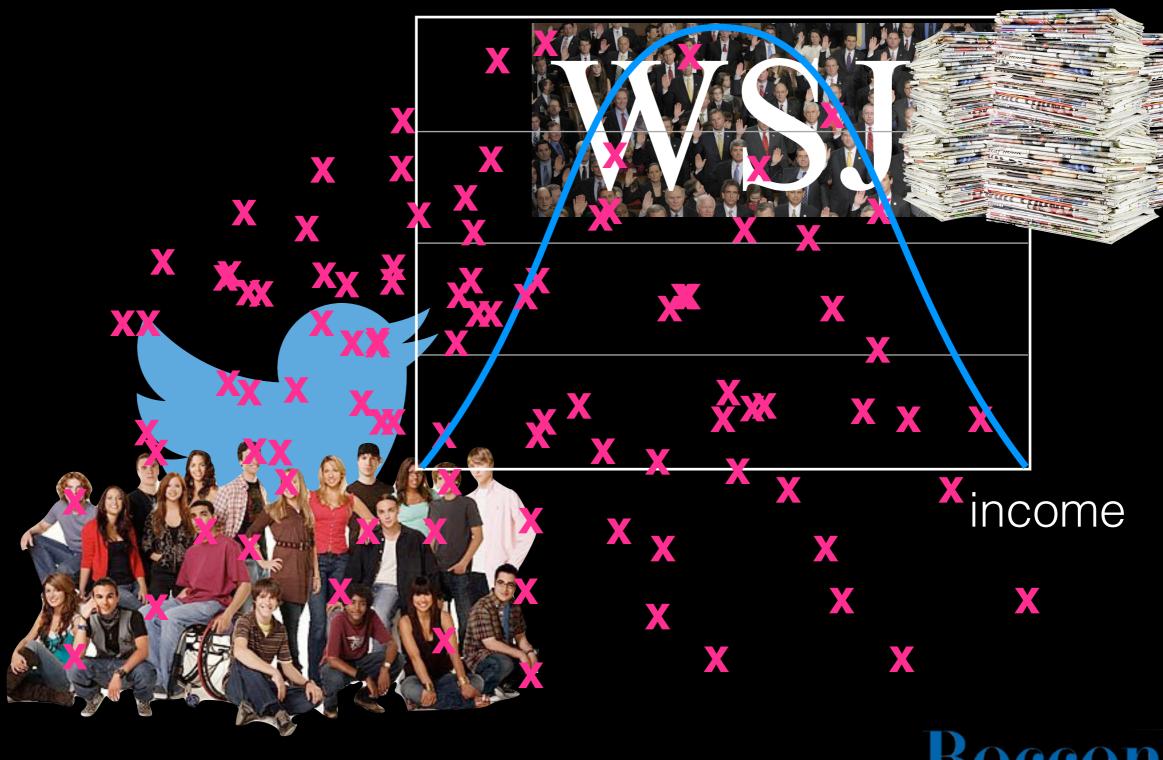
Part 1: Data Bias

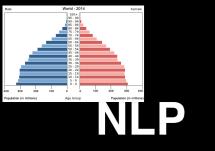




Distributions

age



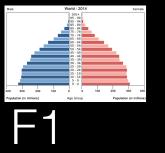


The WSJ Effect vy & Søgaard (ACL 2015)

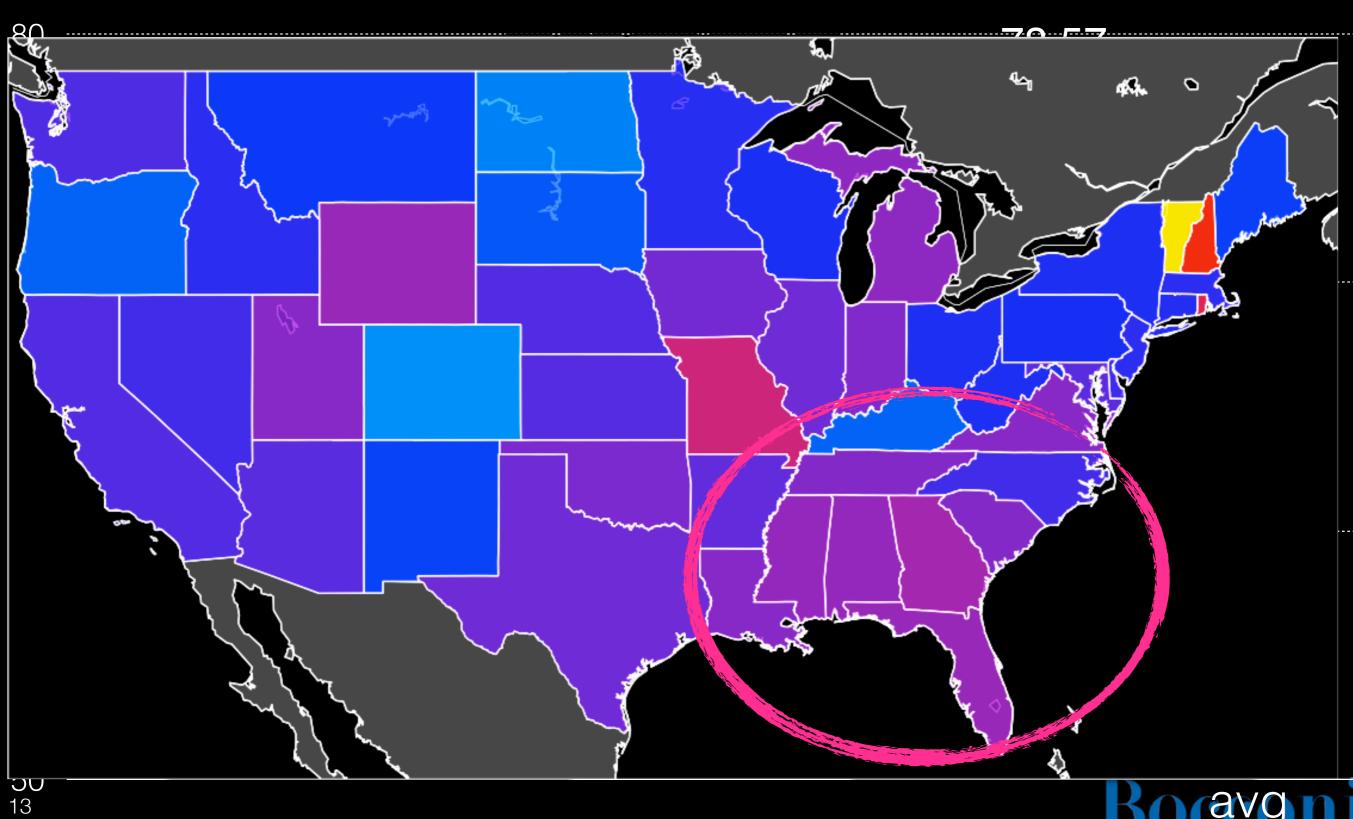
performance

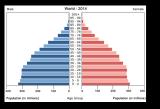
correlates w/ demographics

Bocconi



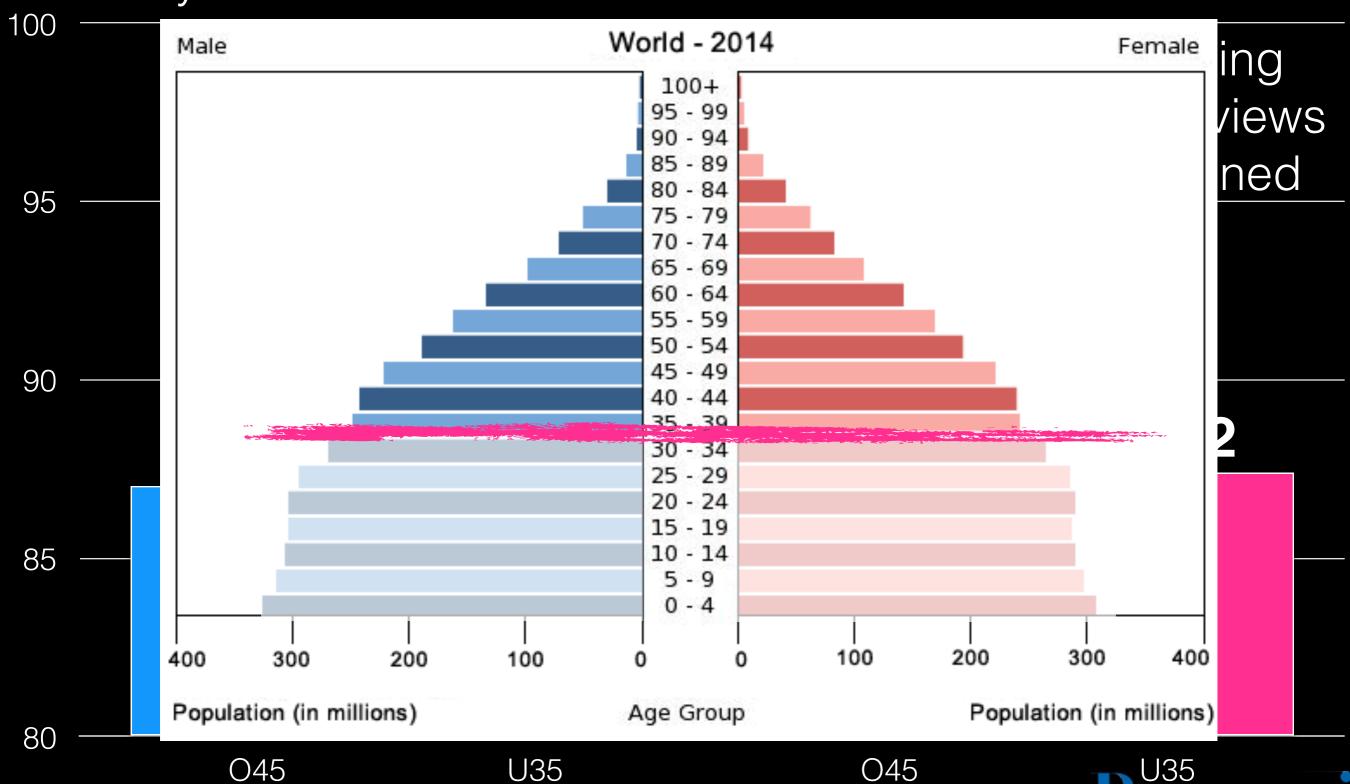
Exclusion

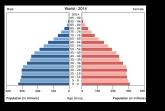




Exclusion

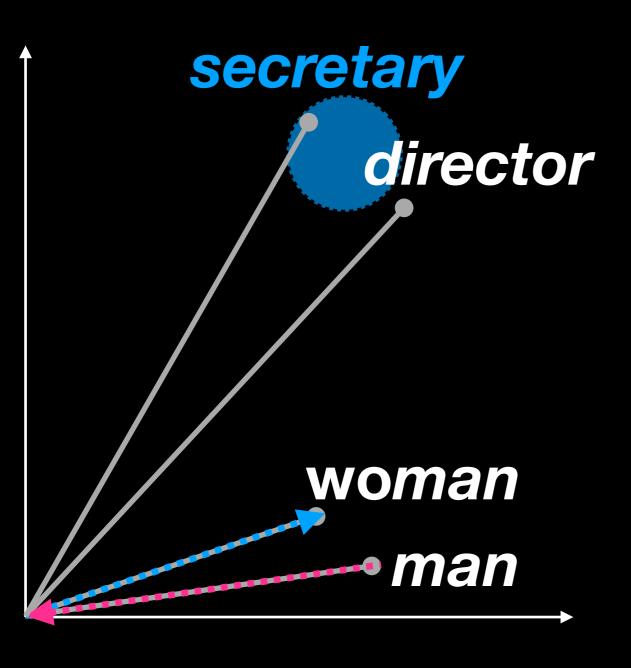
accuracy

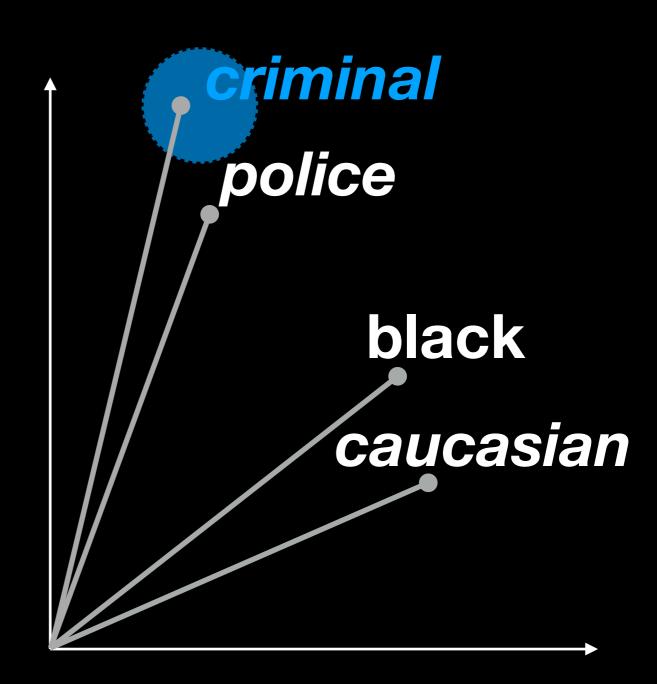


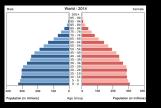


Biased Vectors

director – man + woman ≈ secretary police – caucasian + black ≈ criminal

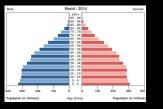




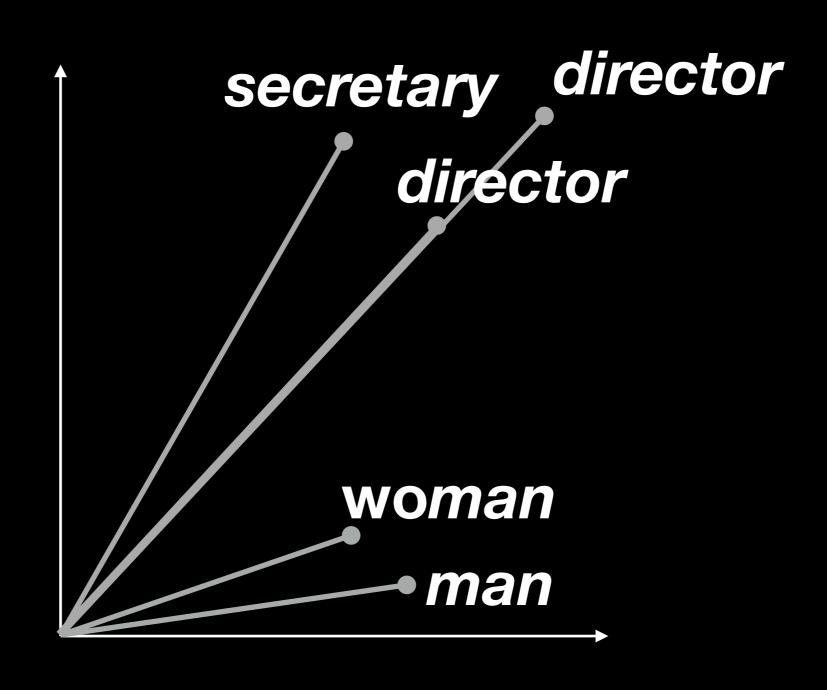


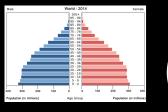
ldea!

DEBIAS THE VECTORS!

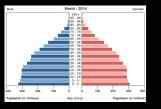


Debiasing Vectors





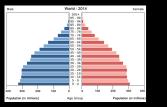
Cause vs. Symptoms



ldea!

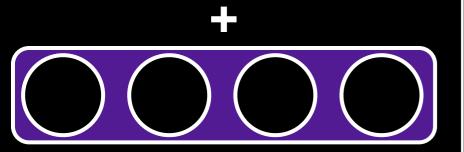
INCLUDE DEMOGRAPHIC INFORMATIONS

IN TEXT REPRESENTATION

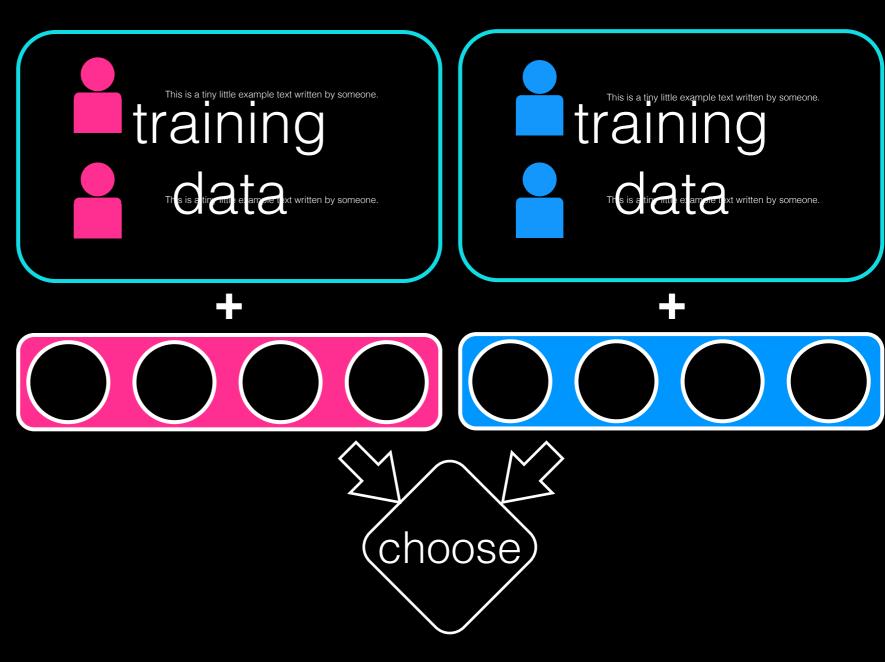


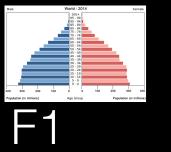
Systems

AGNOSTIC

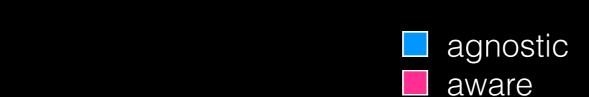


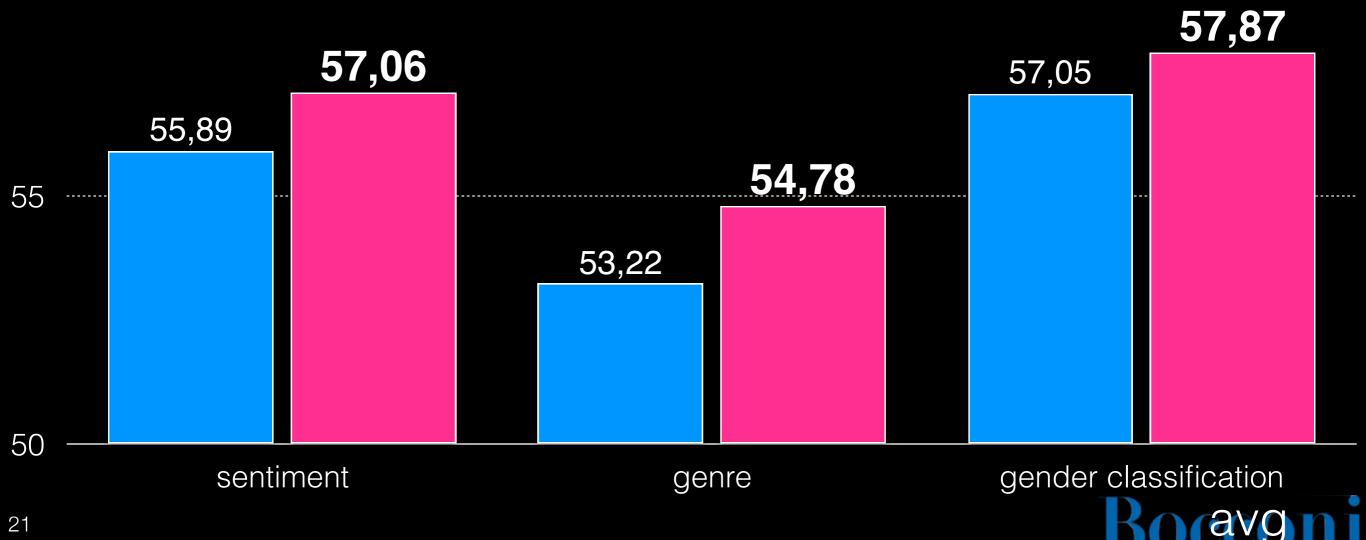
INFORMED





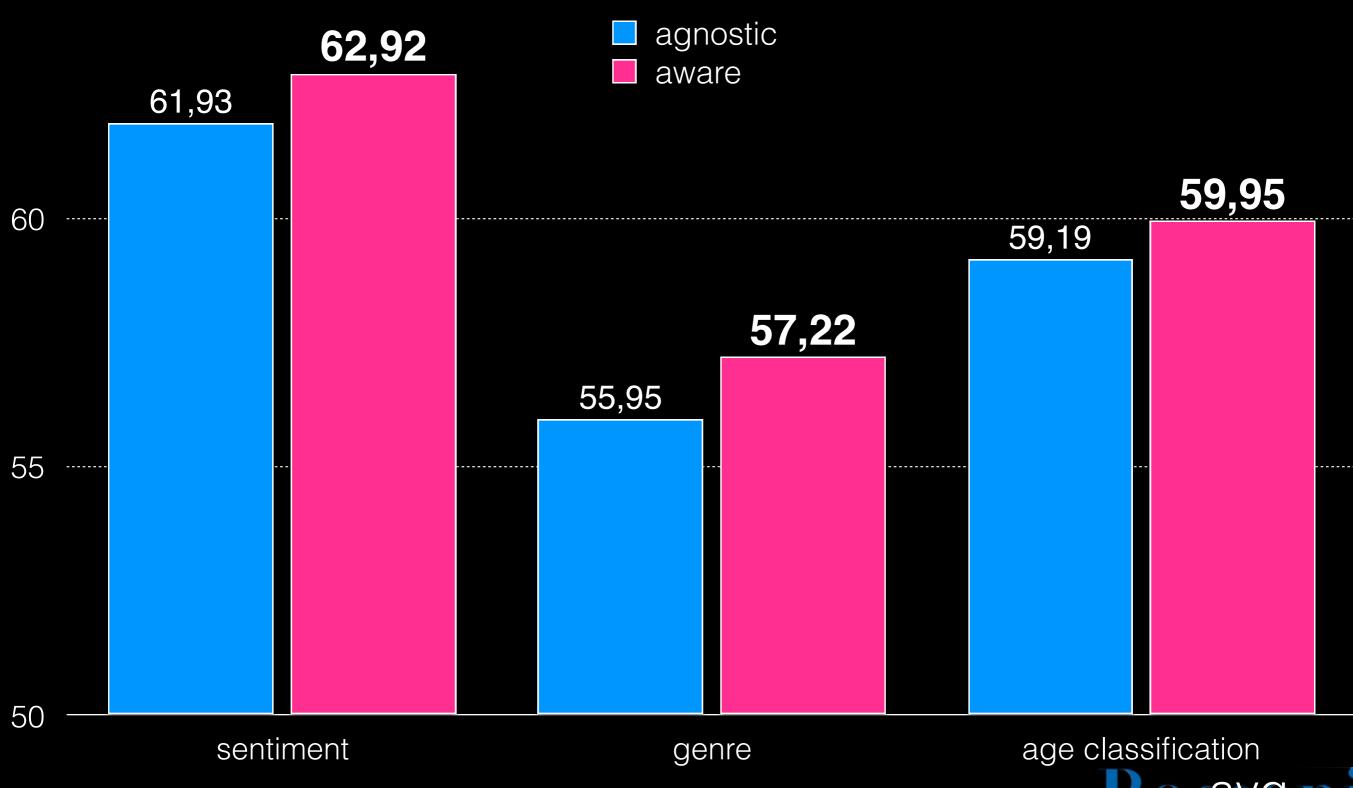
Results for Age (avg)

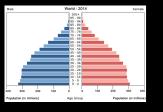




Hovy (ACL 2015)

Results for Gender (avg)





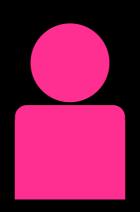
Ok, but...

WHAT IF WE DON'T KNOW!

WANT TO KNOW THE

AUTHOR'S DEMOGRAPHICS?

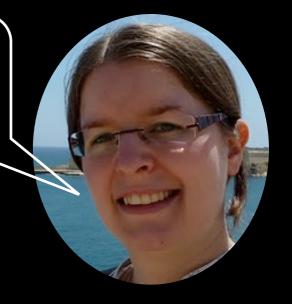
Part 2: Annotation Bias



Annotator Bias

It's a particle!

No! It's an adposition!



PRON VERB PRT NOUN NUM PRON VERB ADP NOUN NUM

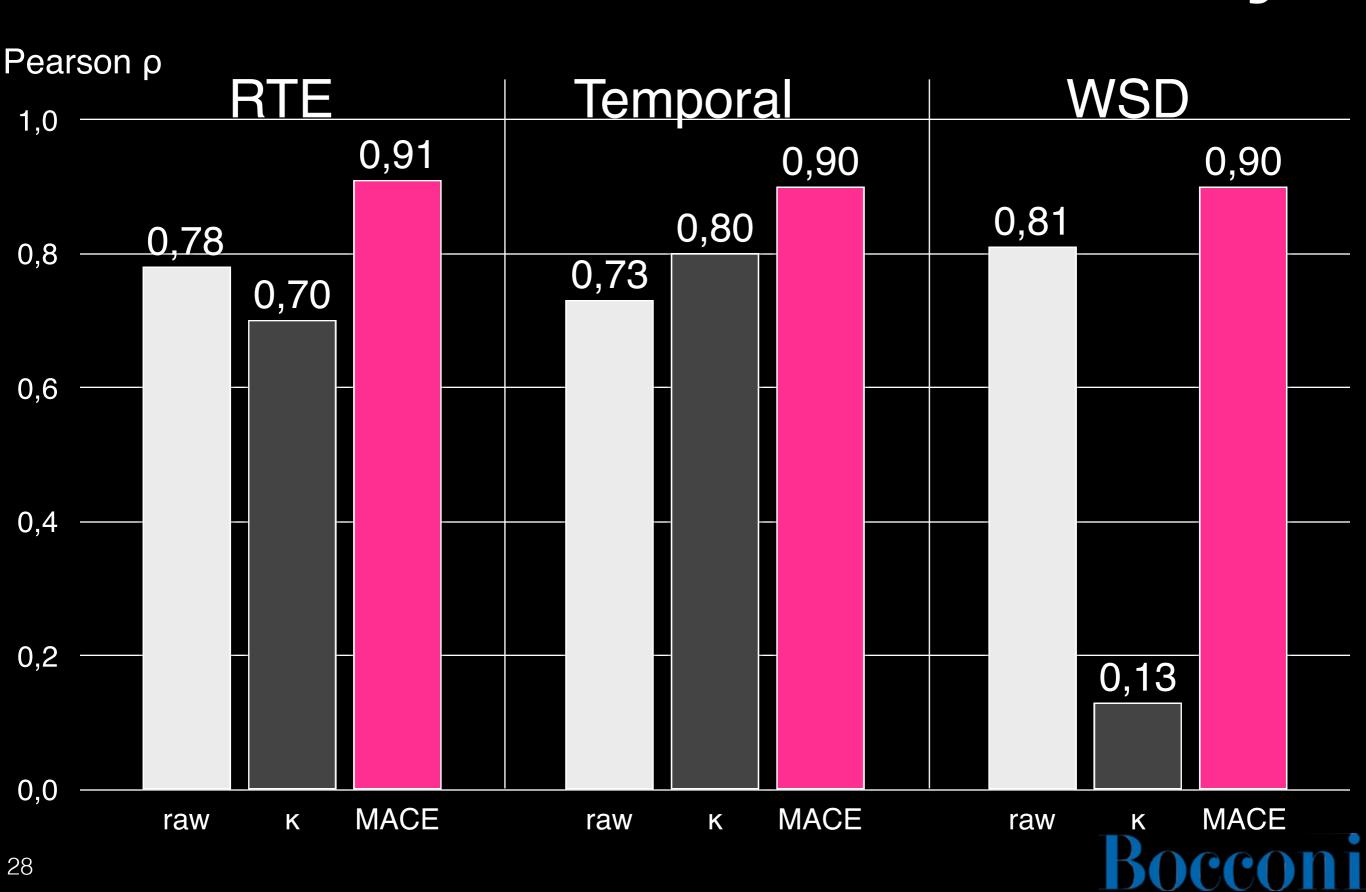
it comes out apr 30

ldea!

FIND OUT WHO'S RELIABLE!

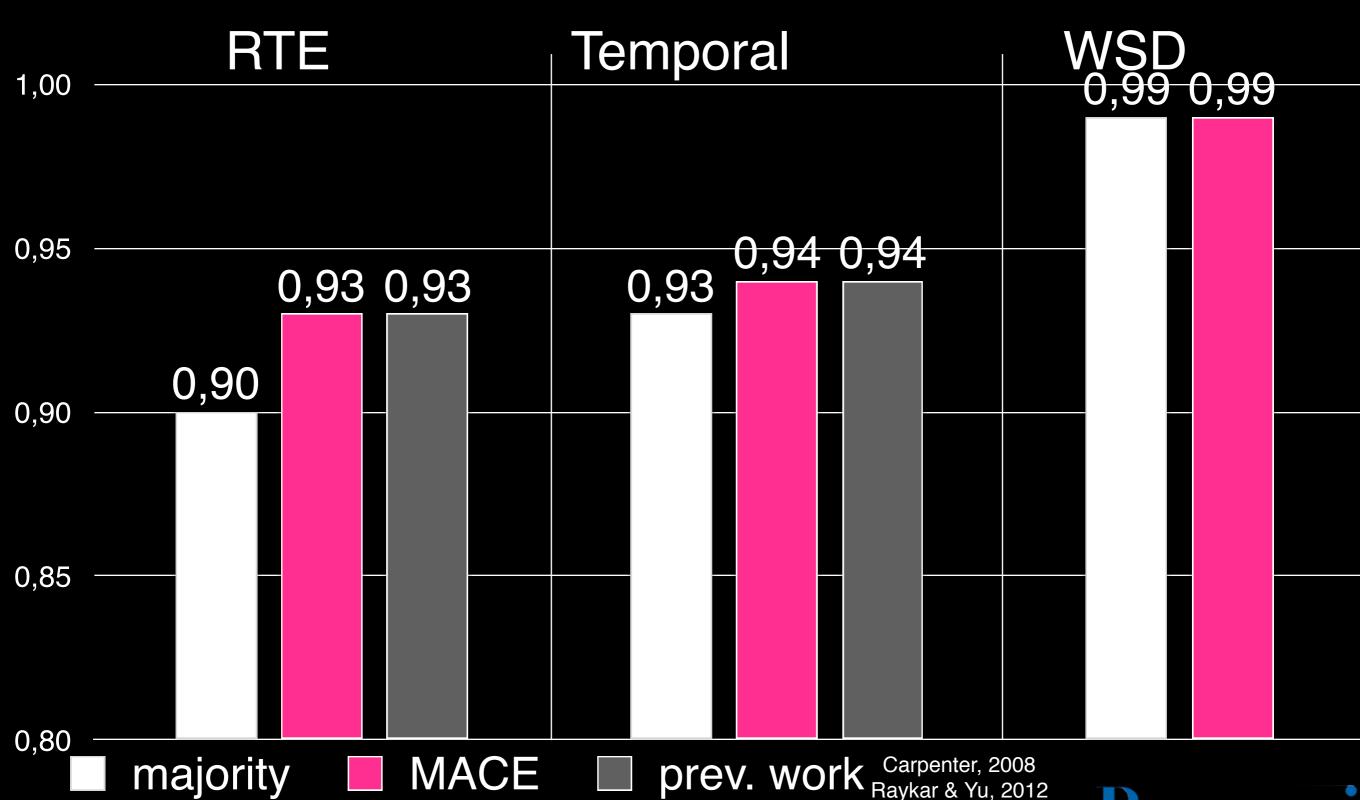
www.isi.edu/publications/licensed-sw/mace/
www.dirkhovy.com/portfolio/papers/download/mace.zip

Correlation with Proficiency



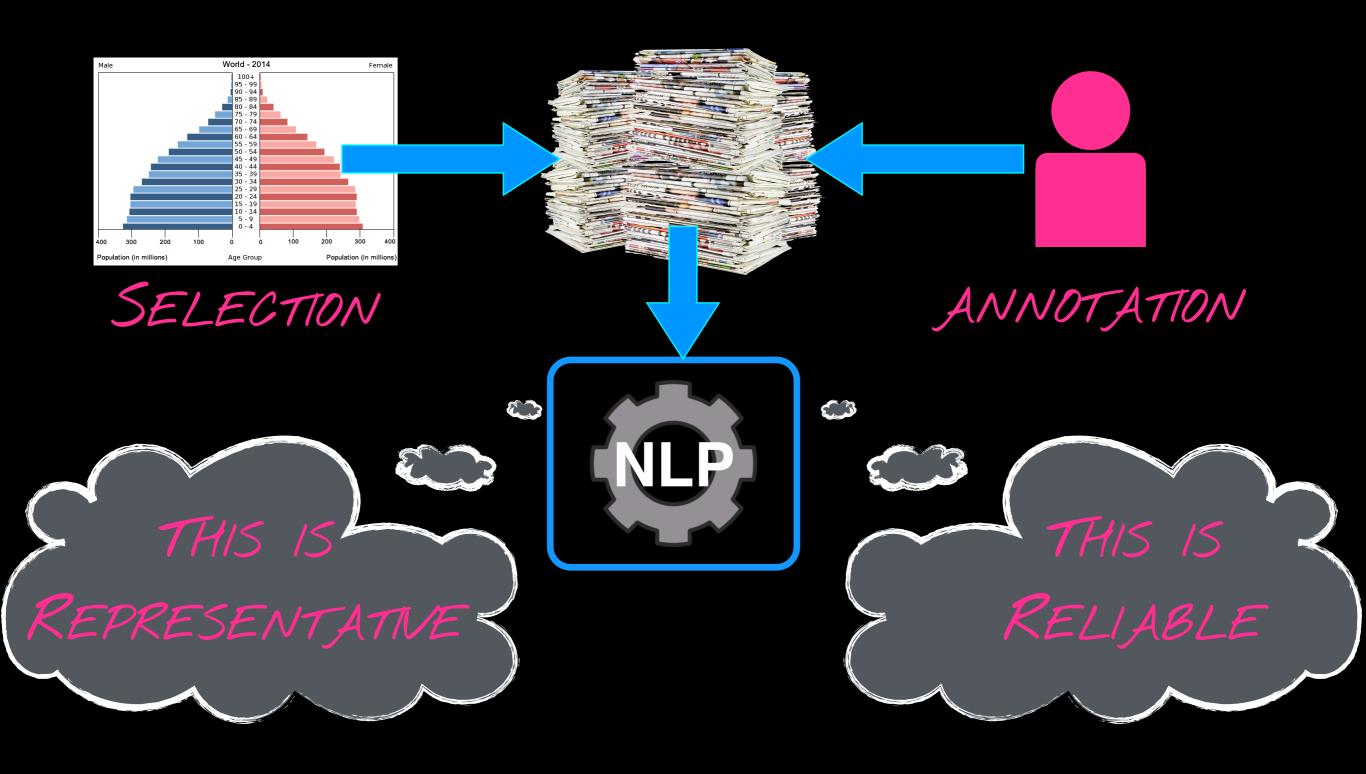
Prediction Accuracy Hovy et al. (NAACL 2013)

accuracy



Part 3: Model Bias

Biased Models



Wrong Coreference

```
Mention --- Coref--- Mention -- coref-
   Mention
                                                                   Mention
The surgeon could n't operate on
                                    his
                                                      it
                                          patient :
                                                                     his
                                                                          son!
                                                             was
                                            --coref--- Mention
                                  Mention
   Mention
The surgeon could n't operate on their patient:
                                                                    their
                                                                          son!
                                                             was
   Mention
                                                     Mention
                                    Mention
                                                                  Mention
The surgeon could n't operate o
                                            patient:
                                     her
                                                                    her
                                                             was
                                                                          son!
```


Biased Sentiment Analysis

0.64 0.52

I made *Latisha* feel *angry* He made me feel afraid

> 0.48 0.43

She made me feel **afraid** I made **Heather** feel **angry**

Models Amplifying Bias

NLP

WOMAN

WOMAN

WOMAN

MAN

Agent: **WOMAN**

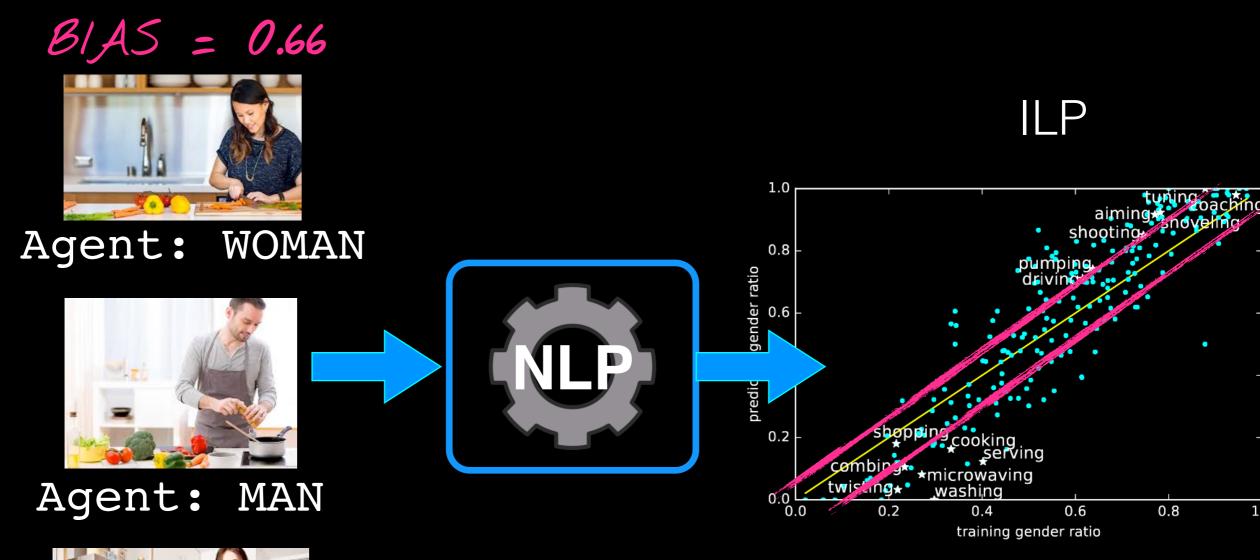
Agent: MAN

WOMAN Agent:

Idea!

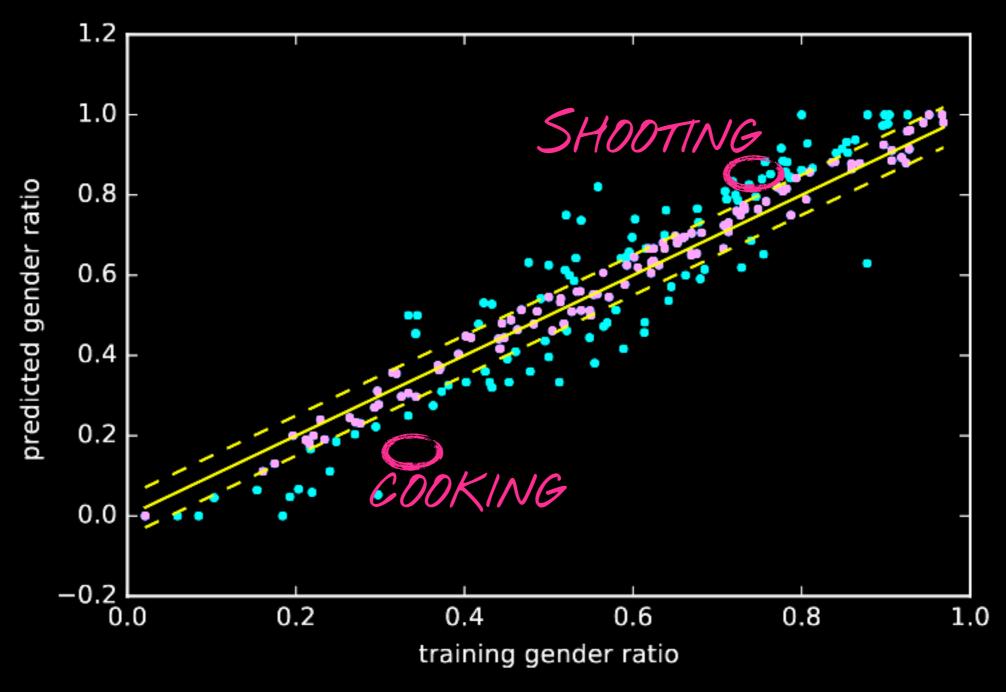
DISCOURAGE MODELS FROM AMPLIFICATION!

Reducing Bias



Agent: WOMAN

Results

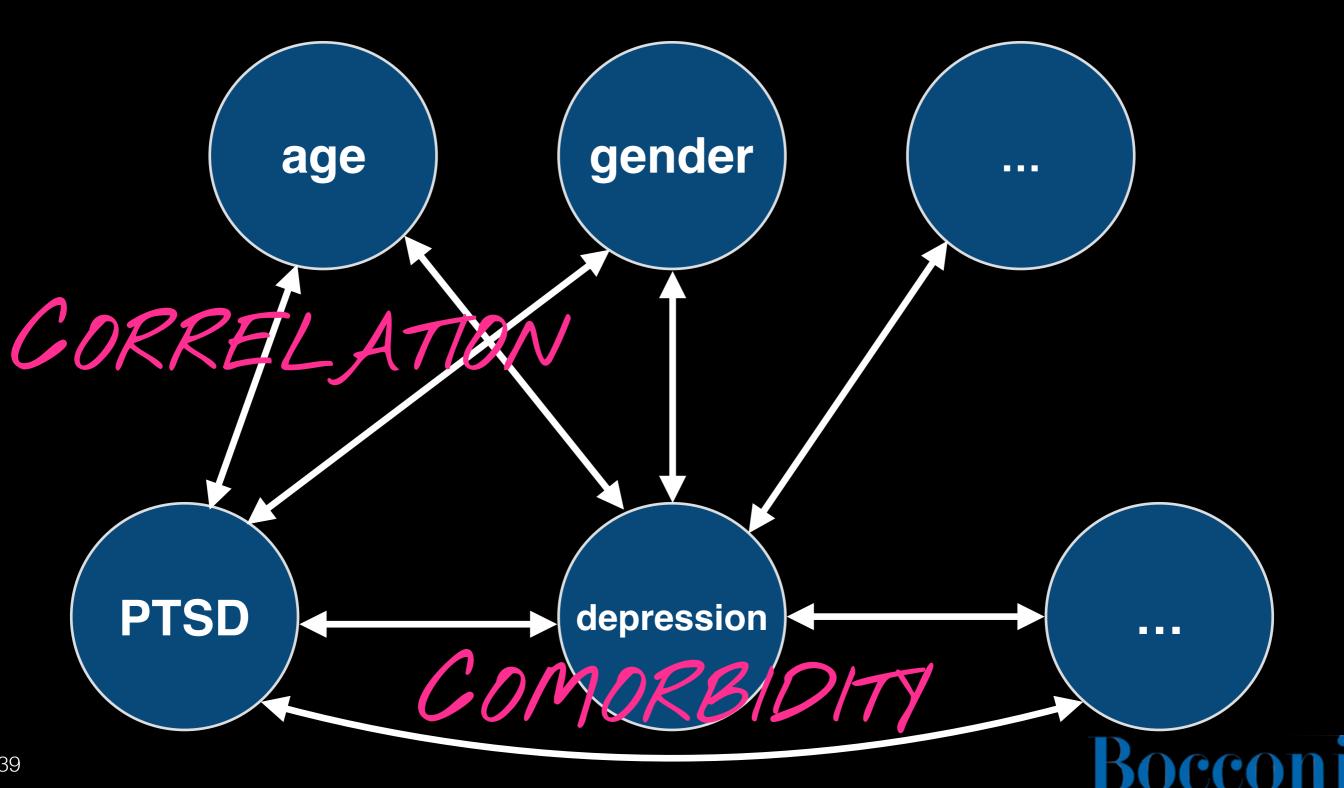


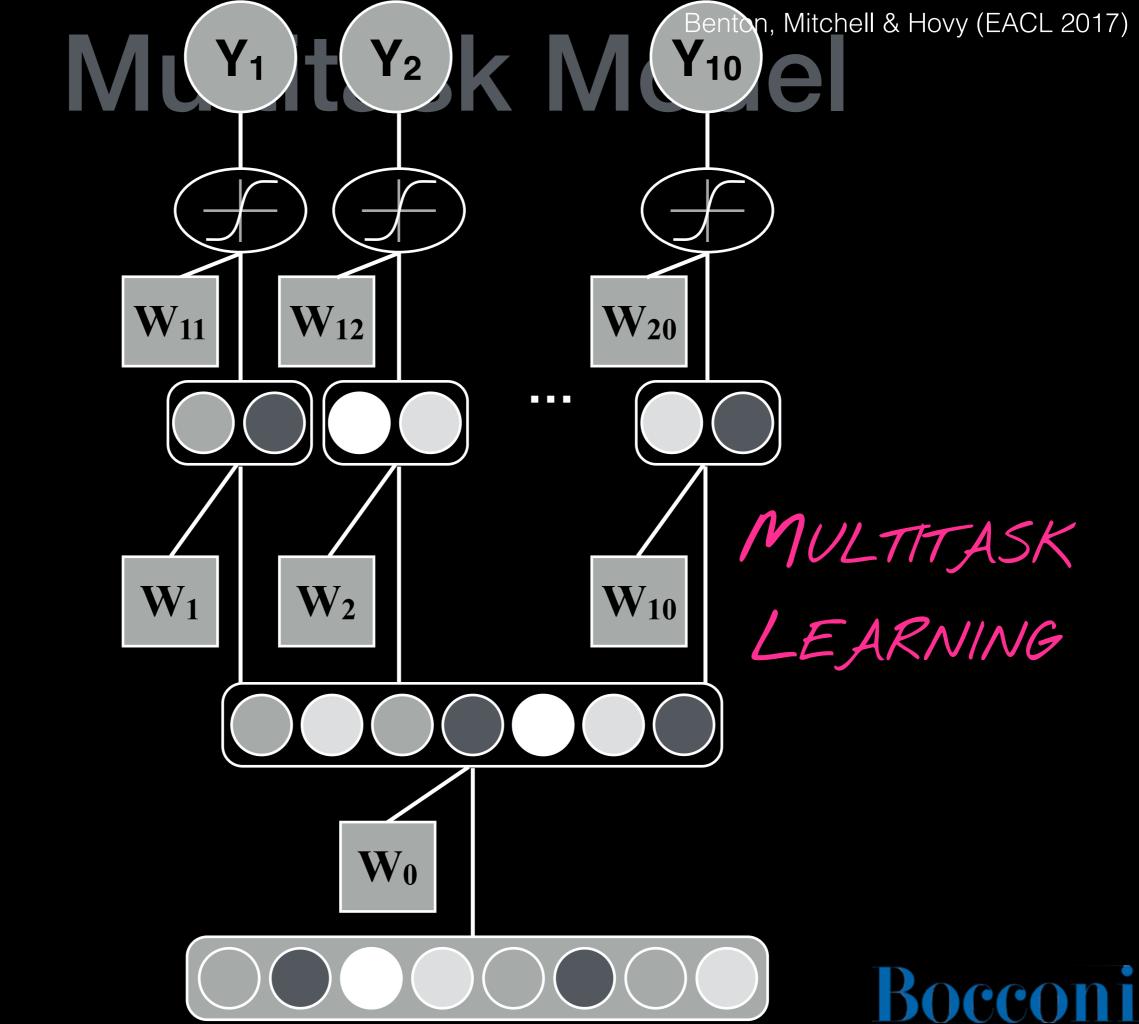
ldea!

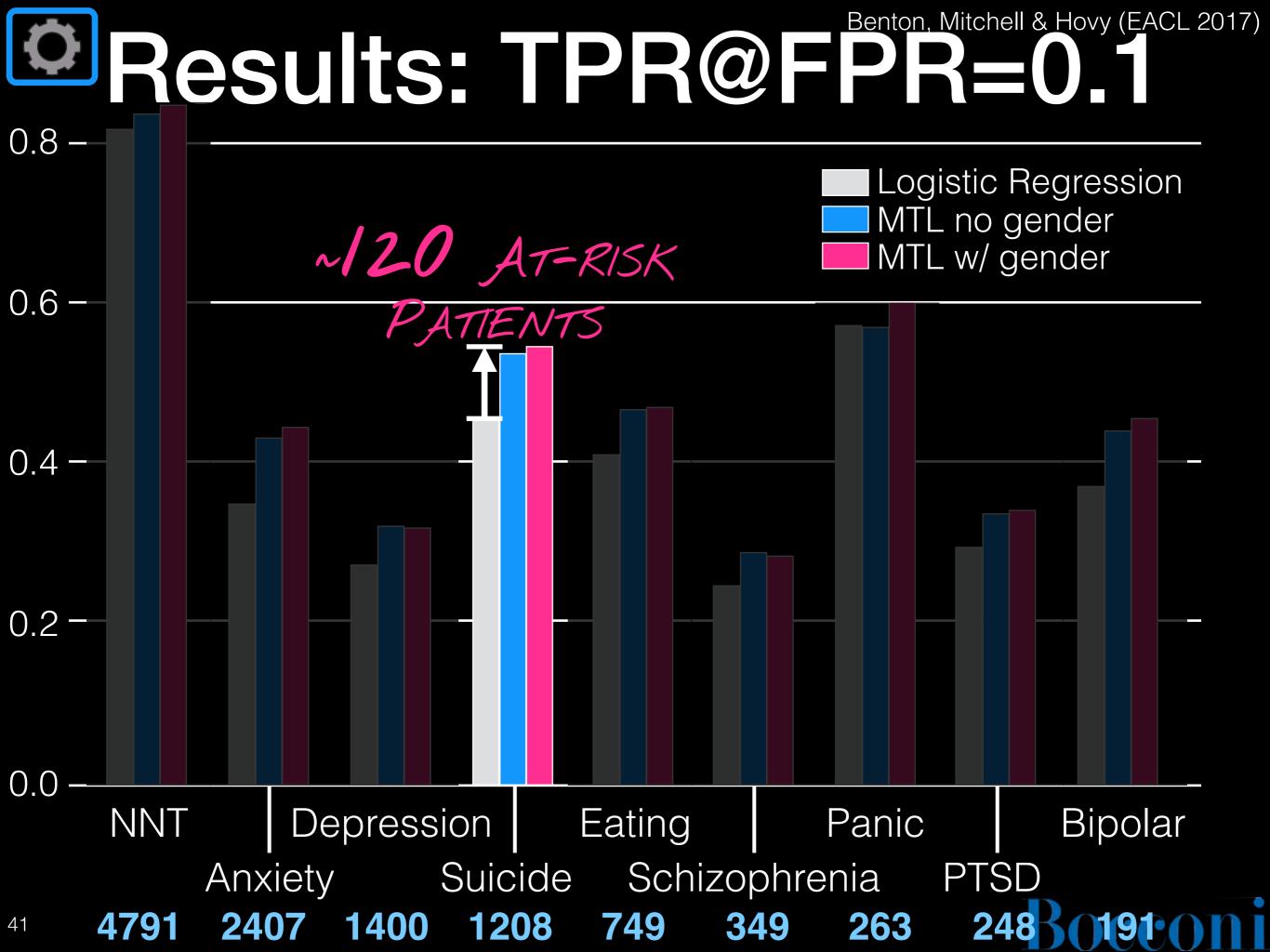
ADD DEMOGRAPHIC

COMPONENT IN MODEL

Comorbidity and Correlation



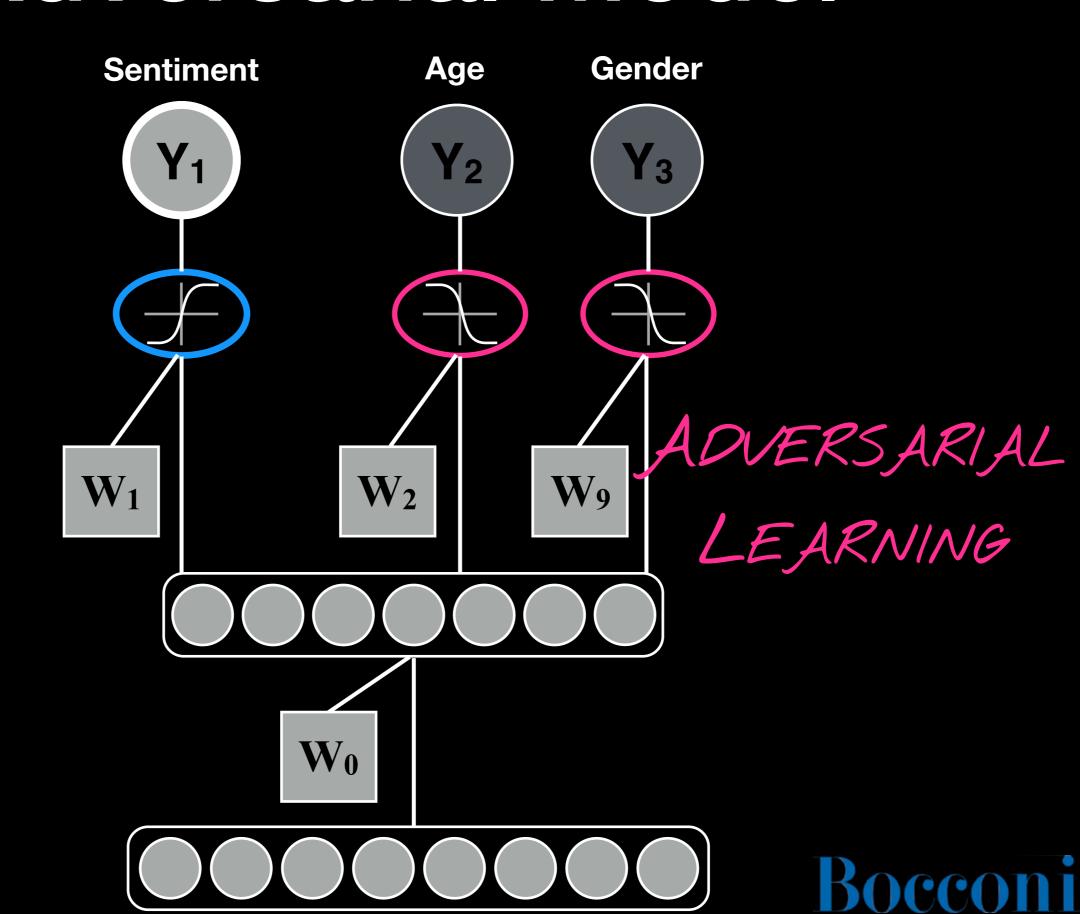




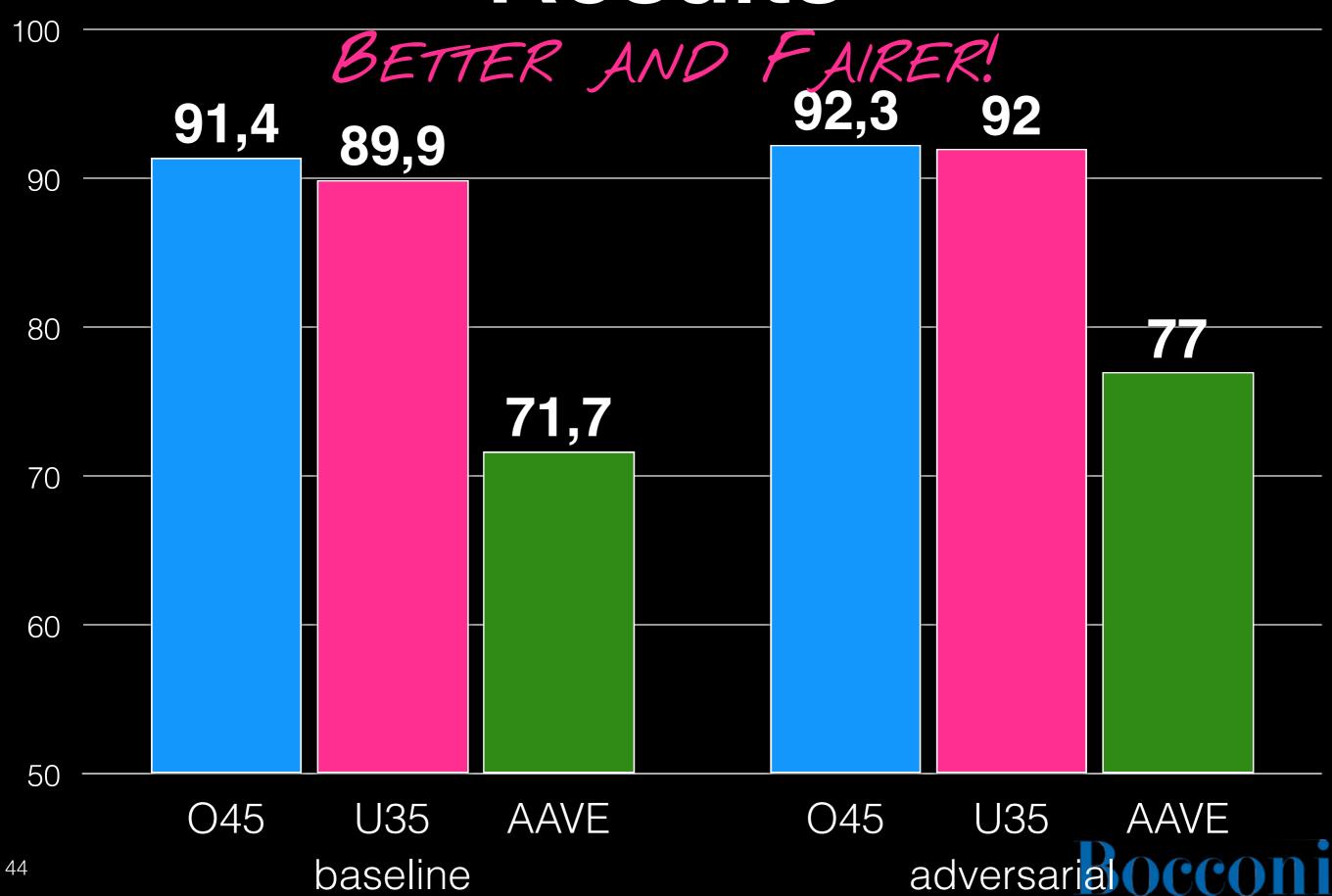
ldea!

CORRECT FOR BIAS ADVERSARIALLY

Adversarial Model



Results



location

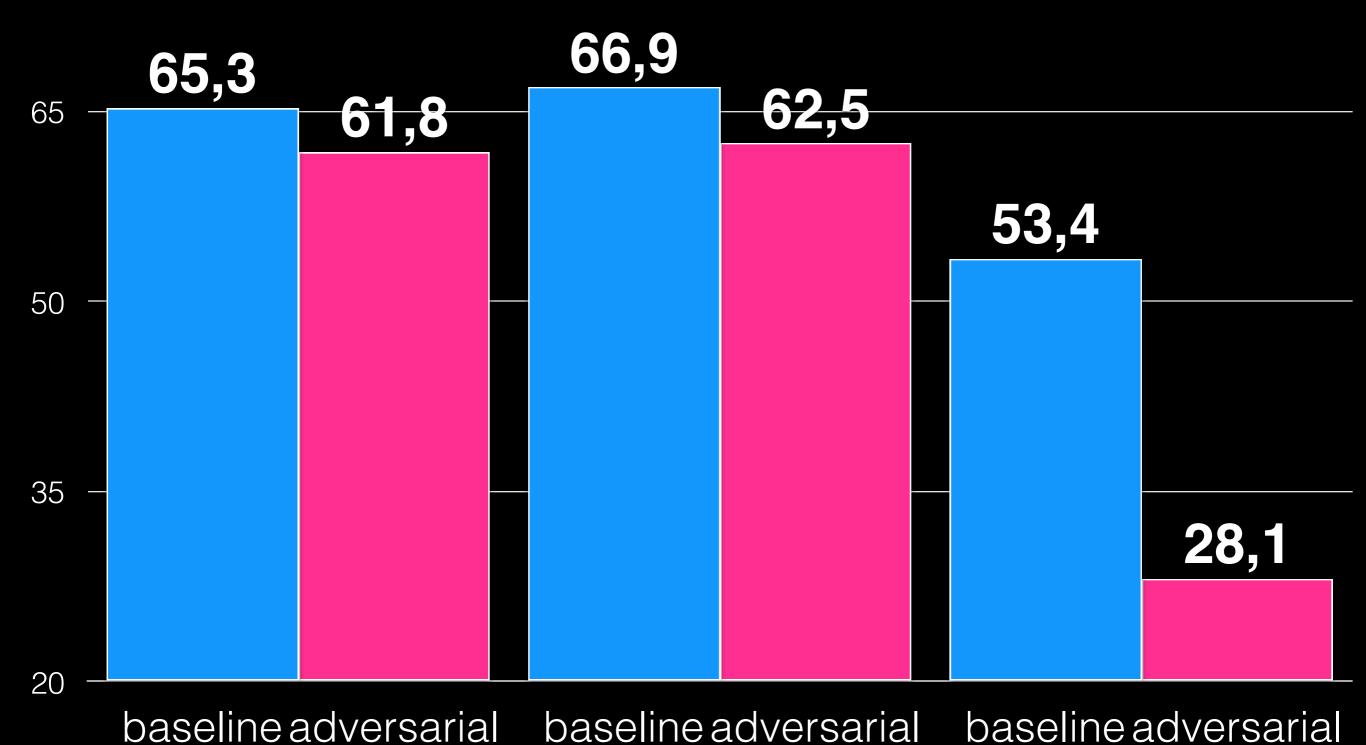
Protecting Demographics

HIDES DEMOGRAPHIC CONFOUNDS

80

45

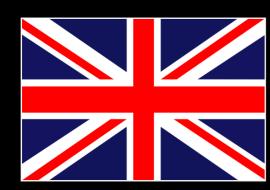
age

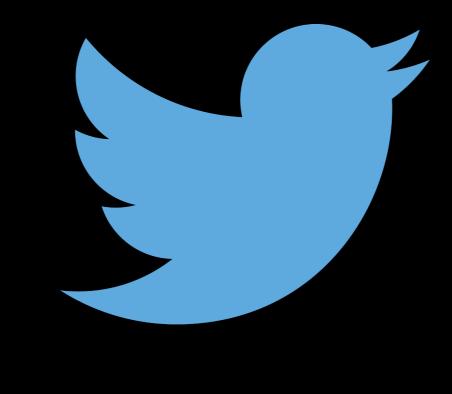


gender

Part 4: Design Bias

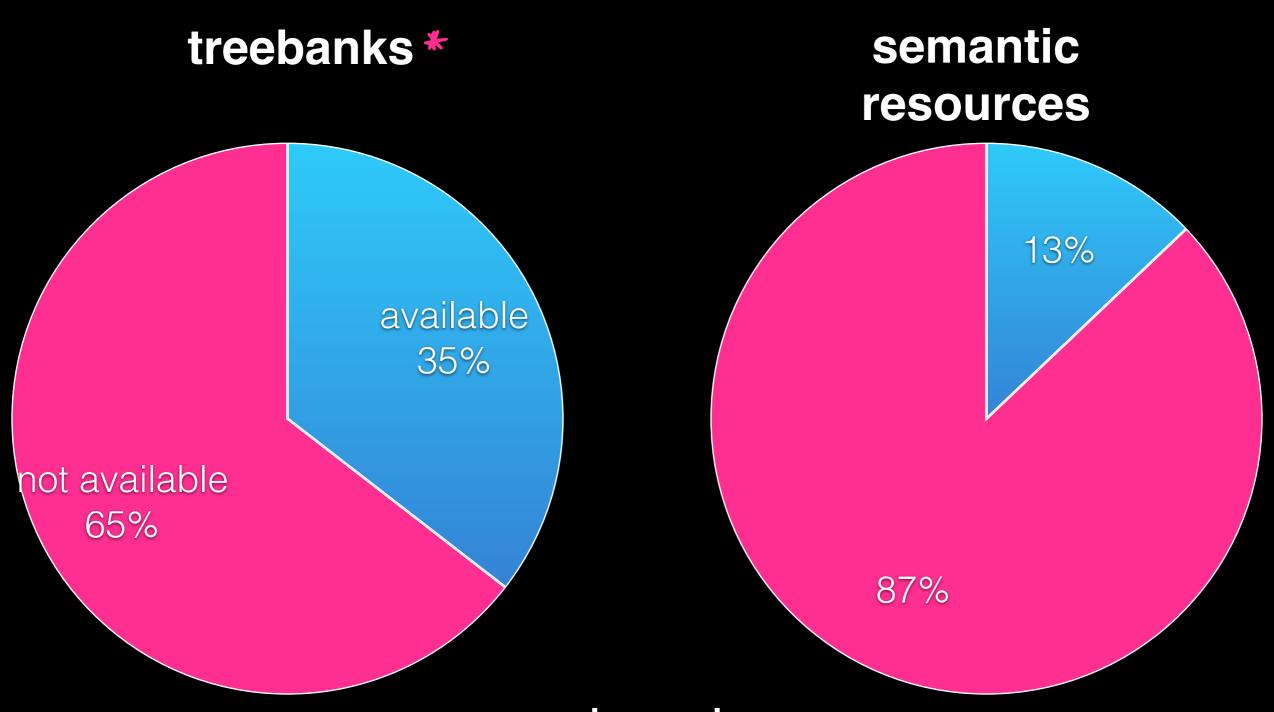
Exposure







Under-Exposure



*BEFORE Up... evaluation

Over-Exposure

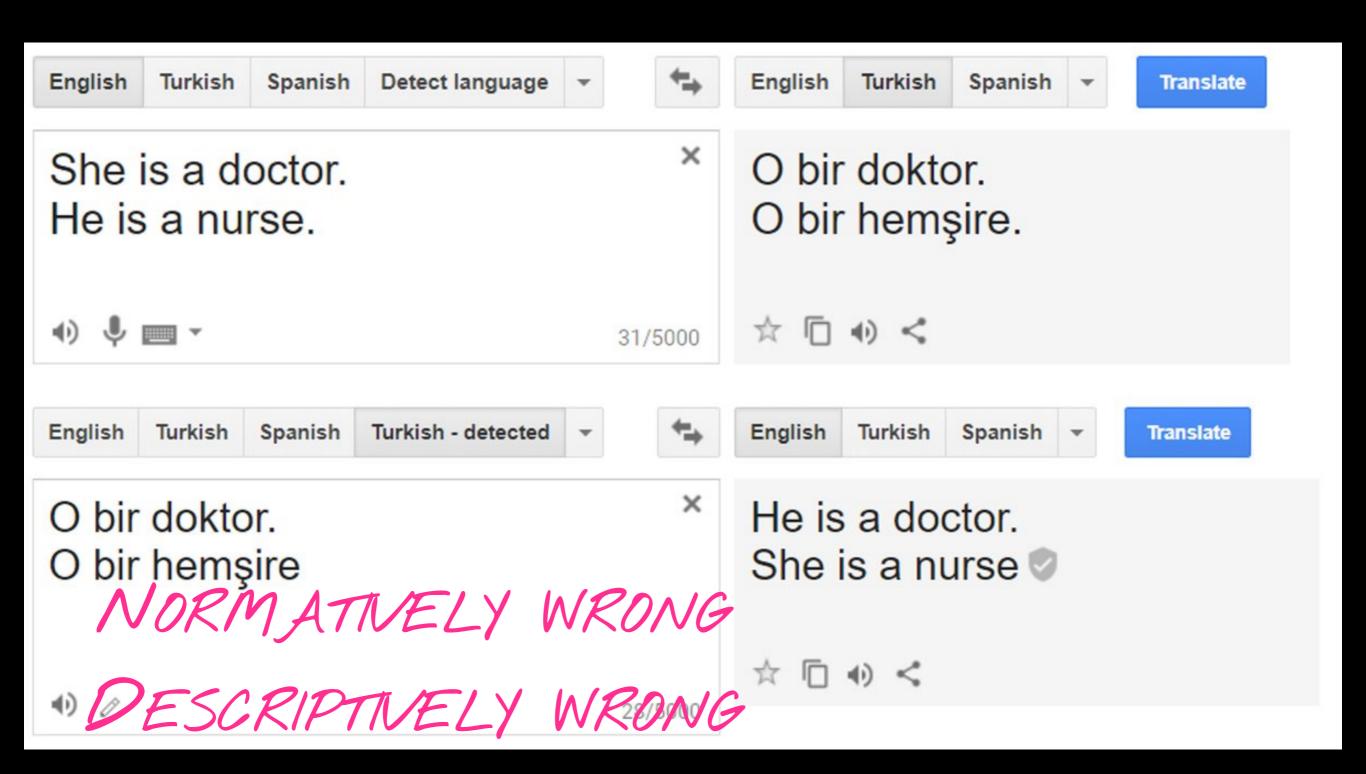
POS tagging

Discourse

Dual Use

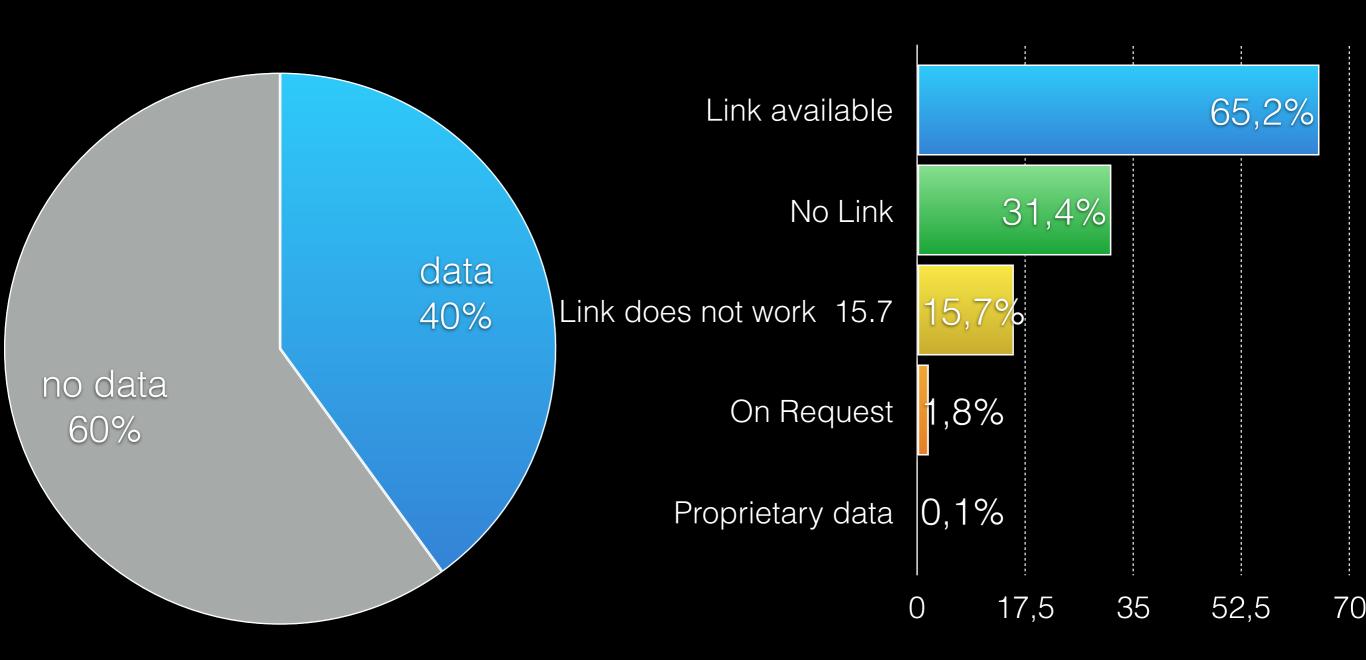
Task	Pro	Con
authorship attribution	historical documents	dissenter anonymity
text classification	sentiment analysis	censorship
personalization	better user experience	tailored ads

Normative vs Descriptive Ethics



Normative vs Descriptive Ethics

Replicability: Data



Replicability: Significance

Cut-offs: 0.1 (meh), 0.05 (standard), 0.01 (strict)

(barely) not statistically significant (p=0.052) a barely detectable statistically significant difference (p=0.073) a borderline significant trend (p=0.09)a certain trend toward significance (p=0.08) a clear tendency to significance (p=0.052) a clear trend (p<0.09) a clear, strong trend (p=0.09) a considerable trend toward significance (p=0.069) a decreasing trend (p=0.09) a definite trend (p=0.08) a distinct trend toward significance (p=0.07) \borderline conventional significance (p=0.051) borderline level of statistical significance (p=0.053)

borderline significant (p=0.09) does not reach the did not quite reach conventional levels of statistical significance (p=0.079)did not quite reach statistical significance (p=0.063) did not reach the traditional level of significance (p=0.10) did not reach the usually accepted level of clinical significance (p=0.07) difference was apparent (p=0.07)direction heading towards significance (p=0.10) does not appear to be sufficiently significant (p > 0.05)does not narrowly reach statistical significance (p=0.06)

conventional significance level (p=0.098) effectively significant (p=0.051)equivocal significance (p=0.06)essentially significant (p=0.10)extremely close to significance (p=0.07) failed to reach significance on this occasion (p=0.09) failed to reach statistical significance (p=0.06) fairly close to significance (p=0.065)fairly significant (p=0.09) falls just short of standard levels of statistical significance (p=0.06) fell (just) short of significance | slight significance (p=0.128) (p=0.08)

fell barely short of significance (p=0.08) scarcely significant (0.05 0.1)significant at the .07 level significant tendency (p=0.09) significant to some degree (0 1)significant, or close to significant effects (p=0.08, p=0.05) significantly better overall (p=0.051)significantly significant (p=0.065)similar but not nonsignificant trends (p>0.05) slight evidence of significance (0.1>p>0.05)slight non-significance (p=0.06)

Don't choose among metrics

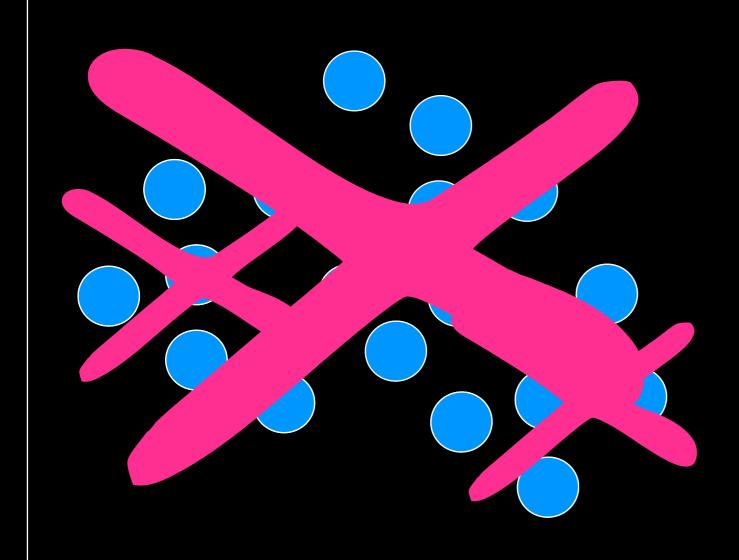
metric	þ
	0,0899
previon	0,062
re	0,179
accuracy	0,0014

Don't choose sample sizes



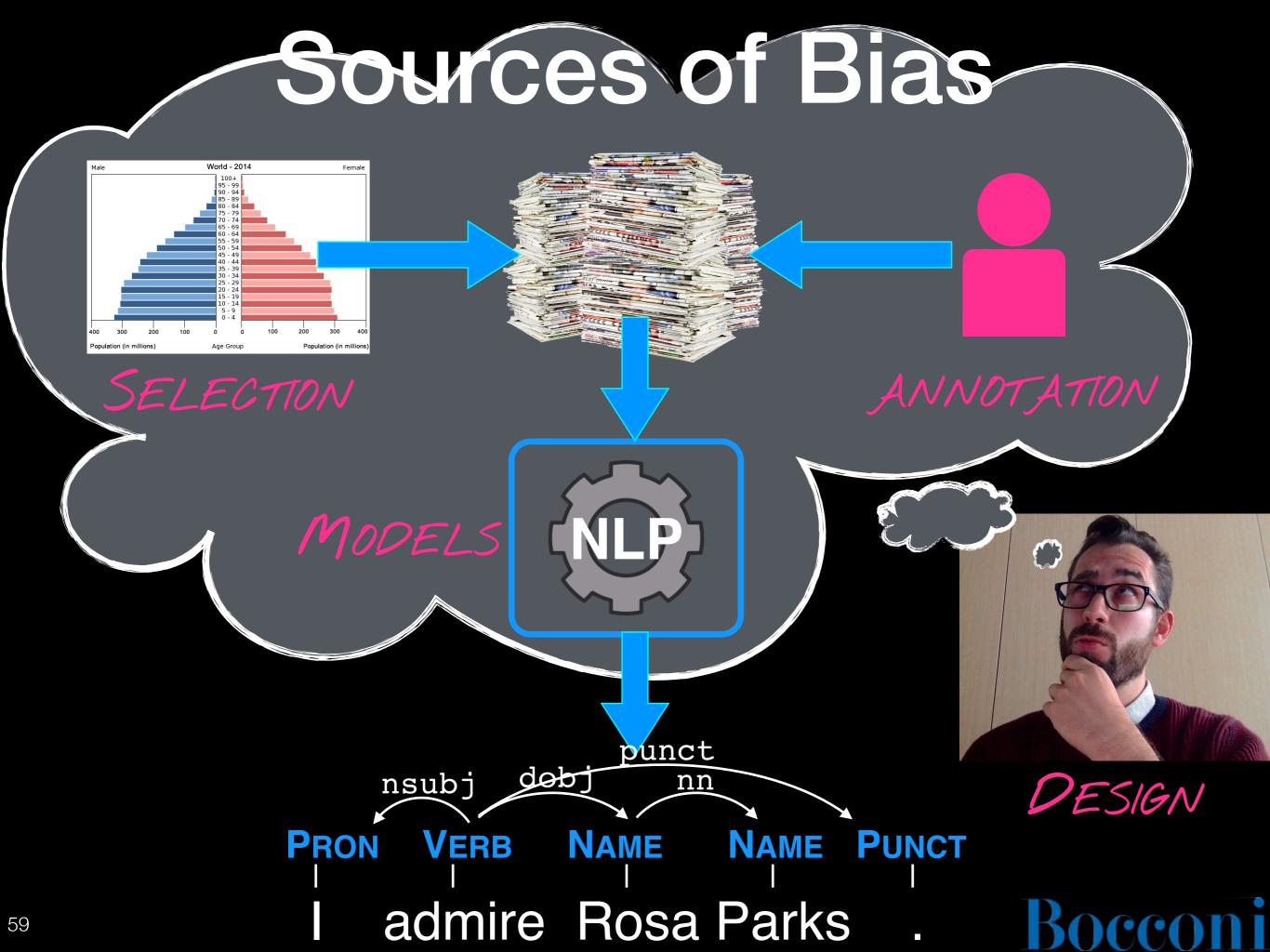
"We observed significant results at sentence length of 26" ...but not with smaller or larger sentences!

Don't Choose Subsets



"Young, lefthanded, vegetarian atheists are significantly less likely to say X" ...but population a whole isn't!

Wrapping Up

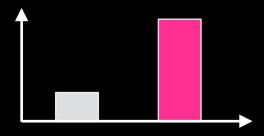


What can we do? Hovy & Spruit (ACL 2016)

Source	Problem	Countermeasures
Male World - 2014 Female 100	Exclusion	stratification, priors
annotation	Label Bias	annotation models, disagreement weighting
models	Overgeneralization	dummy labels, error weighting, adversarial learning
research	Exposure	always consider possible impact

The Goals

Personalization



Performance

Take-home points

- Beware of bias from data, models, and design
- Apply countermeasures and check
- Ask yourself:
 "Am I comfortable with my system classifying me?"

www.dirkhovy.com/portfolio/papers

Thank you!

www.dirkhovy.com/portfolio/papers

Questions?

