Providing new views on textual data with knowledge graphs

Workshop

Leo Born, Juri Opitz

HCH19
Ruprecht-Karls-Universität Heidelberg

July 19th 2019
Part I
- Introduction
- Getting practical

Part II
- The Old Bailey Corpus (OBC)
- OBC2KG
- OBC2KG: Analyses and Visualizations
A quick introduction
Why do we do what we do?

• Humanities researchers can be confronted with large bodies of text
 • Obtaining a bigger picture can be difficult
 • KGs can help to obtain such bigger picture
The KG motivation

- Transform a large body of text to a graph, storing the ‘text’s essentials’
What is a graph?

- In many cases, a collection of triples
 \[\{(source_i, edge_i, target_i)\}_{i=1}^{N} \]
 - e.g., \((\text{birds, are_capable_of, flying})\)
A little ‘common sense’ graph

(bird, capable_of, flying) (plane, capable_of, flying) (mosquito, capable_of, flying) (bird, eats, mosquito) (mosquito, annoys, human) (mosquito, is_a, animal)
Figure: A more visually appealing view
Figure: KGs are missing edges
Figure: KGs are missing nodes
Intermediate insight

KGs are incomplete
Transforming historical corpora to KGs
A bunch of historical documents

Part I

S1271, f. 11r-12v: A.D. 844 (? for 843). (1) Ceolred, bishop (of Leicester), to Berhtwulf, king of Mercia; grant of 14 hides (manentes) at Pangbourne, Berks. s. xiii in.

S278, ff. 11v-12v: A.D. 835 (Dorchester-on-Thames, Oxon.). Egbert, king of Wessex, to Abingdon Abbey; grant of 50 hides (manentes) at Marcham in Oxfordshire. s. xiii in.

S302, f. 12v: A.D. 854 (Wilton, Wilts., 22 April). Æthelwulf, king of Wessex, to the Church; general grant of land and privileges ('Second Decimation'). s. xiii in.

S93, f. 13r: A.D. 726 x 737. Æthelbald, king, to St Mary's Minster, Abingdon; confirmation of lands and grant of 27 hides (cassati) at Watchfield and elsewhere. s. xiii in.

S335x, f. 13v: A.D. 862 (Micheldever, Hants.). Æthelred, king of Wessex, to Æthelwulf, princeps; grant of 10 hides (cassati) at (Little) Wittenham, Oxon. s. xiii in.

S1201, f. 14r: A.D. 868. Æthelswith, queen of Mercia, to Cuthwulf, minister.; grant of 15 hides (manentes.) at Lockinge, Berks. s. xiii in.

S225, f. 14r-v: A.D. 878 for 915 (Weardburg, 16 Sept.). Æthelfæd, ruler of the Mercians, to Eadric, minister; grant of permission to acquire 10 hides (cassati). King Offa by Byna, Wulflaf's great-great-grandfather (abavus), had been destroyed in a fire. s. xiii in.

S355, f. 16r-v: A.D. 892 x 899. Alfred, king of the Anglo-Saxons, to Deormod; grant of 5 hides (mansia) at Appleford, Berks., in exchange for land at Minster-in-Thanet. s. xiii in.

S999, ff. 16v-17r: A.D. 1043. King Edward to Ælfstan, his minister; grant of 10 hides (mansae) at Sevington in Leigh Delamere, Wilts. s. xiii in.

S369, ff. 17v-18r: A.D. 903 (Southampton). King Edward to Tata, his fasillus; renewal of a charter of King Æthelwulf, king of Wessex, covering 3 hides by immersion. s. xiii in.

S404, ff. 18r-19r: A.D. 930. King Athelstan to Cynath, abbot; grant of 10 hides (mansuinculae) at Dumbleton, Gloucs., with 2 hides at Aston Somers, recording King Edgar's confirmation of the land to Osulf, bishop of Ramsbury (A.D. 959 x 970). s. xiii in.

S409, f. 19r-v: A.D. 931. King Athelstan to the church of St Mary, Abingdon; grant of 12 hides (cassati) at Shellingham, Berk. s. xiii in.

S410, ff. 19v-20r: A.D. 931. King Athelstan to the church of St Mary, Abingdon; grant of 5 hides (cassati) at Swinfold, Berks. s. xiii in.

S408, f. 20r-v: A.D. 931. King Athelstan to the church of St Mary, Abingdon; grant of 15 hides (cassati) at Sanford, Oxon. s. xiii in.

S1208, ff. 20v-21r: c. A.D. 931. Athelstan, senator, to St Mary's, Abingdon; grant of land at Uffington, Berks. s. xiii in.

S408, ff. 21r-22r: A.D. 993(?). Probably written by Æthelstane or Æthelstan's secretary. The original was probably about 890 and may be a copy of S380. s. xiii in.
A bunch of historical documents
But wait, there appears to be a simple formal pattern
A pattern

Figure: A pattern
A pattern

a SUBJECT (the king) does SOMETHING (e.g., grant) to SOMEONE (e.g. church of St. Mary)
A pattern

X to Y; Z
A pattern

Figure: A high relation ‘weight’ can indicate a stronger relationship
A pattern

Figure: Design choices
Finally, we have something like this
Let’s get our hands dirty

• start a terminal, type ‘python’

```python
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp('Athelstan grants land to St. Mary’s')
spacy.displacy.serve(doc, style='dep')
```

open the link and discuss. Do you spot an error? Try with other sentences.
Let’s get our hands dirty

doc = nlp('Athelstan grants land to St. Mary’s')
for chunk in doc.noun_chunks:
 print(chunk.text)

what do you see? What are ‘noun chunks’?
import networkx
G = networkx.DiGraph()
chunks = [chunk.text for chunk in doc.noun_chunks]
G.add_edge(chunks[0], chunks[2], label=chunks[1])
import matplotlib.pyplot as plt
plt.ion()
networkx.draw_networkx(G, with_labels=True)

what do you see? What have we done here?
Exercise

1. Add two more triples to the graph
 - one triple where at least one node is already in the graph
 - and one triple with two new nodes
2. Make sure that there is one node which is connected to every other node
3. Use networkx.info(G) and discuss the results
4. Play a little bit around with the graph G (as in 1 or 2) and observe statistical changes with 3
End of part I

Q/A
Let’s get our hands even more dirty!
Figure: What do you see?
Old Bailey corpus

- contains transcripts from historical trials in London\(^1\)
 - Structured and annotated
 - 18th, 19th and 20th century
 - 637 ‘proceedings’

\(^1\)http://fedora.clarin-d.uni-saarland.de/oldbailey/index.html
24.4 mio. spoken words!
Old Baileys 2 KG

- aim 1: test hypotheses (e.g. were males and females differently punished in historical London, did that change over time?)
- aim 2: explore the KG, what are centered nodes? Was there a person sentenced multiple times, etc.?

With a KG, we can engage these and many more questions in a very straightforward way
Plain text vs. in-depth annotations

• What information you can use depends on...
 • ... whether your data is structured (e.g. XML/TEI-annotated) or unstructured (plain text)
 • ... what language it is in and what tools there are
 • ... what you want
Intermediate insight

- In the simplest case, we start from **high-quality and extensive annotations**
- In the hardest case, we start from **plain text**
 - make out and exploit **formalized patterns** (e.g. the charters we have seen)
 - use automatic extraction tools, e.g. extract subject-verb-object triples with **dependency parsing**
 - caveat: not every language follows SVO-patterns...
Luckily for us, the corpus has been extensively annotated by a large research project\(^2\)

\(^2\)http://www1.uni-giessen.de/oldbaileycorpus/
Design choices

We want:

- trial nodes (ids), named entity nodes (e.g., the defendant’s name), offence nodes (e.g., theft), description nodes (e.g., what was stolen), punishment nodes (e.g., prison)
- edges to connect trial nodes to defendants, punishments etc.
OBC examples

Some examples...
Extracting the defendant

WILLIAM CLARKE
WILLIAM
CLARKE
male
Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory" value="grandLarceny"/>
stealing two gold and three silver watches,
and about 80 l. in money
</rs>
Extracting the offence

<rs id="..." type="offenceDescription">
<interp inst="..." type="offenceCategory" value="theft"/>
<interp inst="..." type="offenceSubcategory" value="grandLarceny"/>
stealing two gold and three silver watches,
and about 80 l. in money
</rs>

What was stolen? This is more difficult to extract ... it is not annotated
If things are not annotated, but annotation is very desirable, we must automatically ‘annotate’ them.
Let’s parse this text

• start a terminal, type ‘python’

```python
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp('stealing two gold and three silver watches')
spacy.displacy.serve(doc, style='dep')
```

open the link and discuss. Do you spot an error? Does it help us to see what exactly was stolen?
Excercise

• insert a few random empty spaces e.g.,
 ‘stealing two gold and three silver watches’.
 • Discuss what happens

• insert: ‘on the 10th of December 1827’ between ‘stealing’ and ‘two’
 • Discuss what happens
Intermediate insight

NLP systems are a bit like ‘princesses on peas’
⇒ a super small change in the environment can easily disturb them

Figure: Princess on a pea.
However

... sometimes it’s okay if we don’t catch everything.

• catching only the word ‘gold’ or ‘watches’
 • would certainly be better than catching nothing
 • and probably also better than using the full text as a stolen-item-node
 • Question: why?!
OBC2KG

So, how do we build a KG from the OBC?
OBC2KG

- start a terminal, type 'git clone https://gitlab.cl.uni-heidelberg.de/born/obc2kg.git'
- type 'cd hch-kg', then 'ls -l'
 - data/ contains small subset of OBC
 - output/ is used to store constructed knowledge graphs
 - src/ contains scripts
 - visualization/ contains visualization suite
• type 'cd src', then 'ls -l'
• script `graph_builder.py` does all the heavy lifting
 • iterates over data files
 • extracts, for each trial, all nodes and texts
• we will only interact with `main.py`
 • allows for invoking text simplification function from `graph_helpers.py`
OBC2KG

• type 'python main.py -h' to show all available options

• example data contains OBC data for 1720, 1820, and 1913
• create a graph for the year 1720:
 • type 'python main.py -year 1720 -output_path ../output/example_graph_1720.json'
OBC2KG: Analysis

• analyze the graph by using `graph_stats.py`
 • type `python graph_stats.py -general ../output/example_graph_1720.json`

• type `python graph_stats.py -h` to show all available options
• **Exercise 1**: What are the 10 most central nodes?
• **Exercise 2**: What is the distribution of offences?
• **Exercise 3**: Play around with the other categories
OBC2KG: Analysis

- **Exercise**: do the same for 1820 or 1913
- compare the stats to 1720
 - what differences – if any – do you see?
OBC2KG: Analysis

- **Exercise**: re-run the stats script with `-detail description`
 - what do you notice?
• recall that text descriptions can be very long
 • e.g. “stealing two gold and three silver watches”
• by simplifying them, we can reduce these to just the most important words/phrases
 • e.g. *gold* or – ideally – *watches*
• simplification is possible with flag `-text_node_simplification` of `main.py`

 • **Exercise**: create two simplified graphs for one year
 • one using `-text_node_simplification spacy_direct_object`
 • the other using `-text_node_simplification classifier`

• print the stats on descriptions for the new graphs
 • what do you see?
Terminals are great and stuff, but wasn’t there a more interactive and appealing way to look at the KGs?
OBC2KG: Visualizations

- `cd ../visualization`
- `python -m http.server`
- open `http://localhost:8000` in your browser
- open the file browser and go to the output directory
OBC2KG: Visualizations

- Map some node types onto each other, e.g. offence and description
 - What do you see? What kind of descriptions are associated with the offences?
- Do the same with a graph from a different time
 - How do the mappings compare?
 - Did anything change?
OBC2KG: Visualizations

- Visualizations can be a great tool to explore data in a more intuitive way.
- Looking at diverse transformations or structures of graphs, questions can arise that were not thought about before:
 - Why were verdicts for sexual offences more often not guilty in the 18th century and more often guilty in the 20th century?
 - Who were the people involved in multiple trials? Do they have any commonalities?
- If, on the other hand, you have specific questions in mind, coding yourself to an answer might give you more than a visualization tool.
Addendum: plotting gender distributions over the whole corpus

- we have prepared a stats file (*gender_punishment_time.csv*) for plotting
- with it, you can plot the distribution of verdicts and punishments per gender over time
- type 'python plot_gender.py imprison' to generate file *imprison-gender-time.png*
- open it: 'okular imprison-gender-time.png'
 - what do you see?
An example: Tracing the ‘invention’ of imprisonment as punishment

Figure: Ratio of males and females which were sentenced to prison.
OldBailey2KG code repository

https://gitlab.cl.uni-heidelberg.de/born/obc2kg

• caveat: code may be not free from bugs and some things may not be modeled ideally
• if you want to build on this work and have questions, don’t hesitate to contact us
Contact

lastname@cl.uni-heidelberg.de
Pointers

- visualization: https://visjs.org/
- spacy: https://spacy.io/
- networkx: https://networkx.github.io/
- KG of the Regesta Imperii [OBN18, BON18]
- Holy Roman Emperor itineraries [OBNP19]
References

Leo Born, Juri Opitz, and Vivi Nastase. A knowledge graph from the regesta imperii: Construction, visualization and macro-level analyses. In Inaugural Conference of the European Association for Digital Humanities (EADH), Galway, Ireland, 2018.
