Semantic Change and Emerging Tropes in a Large Corpus of **New High German Poetry**

Thomas Nikolaus Haider^{1,2}, Steffen Eger³

¹ Max Planck Institute for Empirical Aesthetics, Frankfurt | Department Language and Literature ² University of Stuttgart | Institut für Maschinelle Sprachverarbeitung (IMS)

³ Technical University of Darmstadt | Natural Language Learning Group

Introduction

Poetry lends itself well to semantic change analysis, as **novelty of expression** (Underwood, 2012; Herbelot, 2014) and succinctness (Roberts, 2000) are at the core of poetic production.

Self-Similarity can track literary periods and show linearity of semantic change.

Model

Jointly compute word2vec embeddings for MAIN corpus and add each time period (Bamman et al., 2014)

 $\mathbf{w}(t) = \mathbf{e}_w \mathbf{W}_{\text{main}} + \mathbf{e}_w \mathbf{W}_t$

Previous work (Haider, 2019) showed salient topics of literary periods. Then how are topics correlated to form metaphors / tropes? We compute cosine similarity of word vectors over time to see the rise of tropes (`love is magic'). We find change mainly within the German Romantic period, where tropes are picked up and permeate into Modernity.

We compile a large corpus of German poetry with **75k poems** and **11 million tokens**, ranging from 1575 – 1936 A.D., from the Baroque period into Modernity.

No need to align independently trained embeddings for every time slot. Instead, a joint (MAIN) model is learned that is then reweighted for every time epoch (originally regional variables: US states). This is convenient, but it does not necessarily mean that embeddings of a certain low-frequency word in a given time slot are stable. Also, this concatenation does not allow to look at certain semantic laws (conformity, innovation), because it always reverts to MAIN.

Corpus

Figure 2: Pairwise Self-Similarity. Top-3000 most frequent words. Cossine similarities of word w with itself in adjacent time slots $cossim(w(t_i), w(t_{i+1}))$

Experiments

Pairwise similarity of a given word over successive time steps (13 slots 25+50) tracks literature periods. Upward traj. show homogenization, downward traj. diversification of vocabulary. Dips show onsets of lit. period (1750: Onset of Romantic period).

Self-Similarity

Total similarity of a given word over all possible time distances shows an approx. **linear relation** b/w change and time.

Figure 3: Total Self-Similarity of words that occur at least 50 times in every time slot. Cossine similarities aggregated by the distance of compared time slots (t_i, t_j) averaged for every time slot given a word. **Removed stopwords. Whiskers: [5,95] percentiles.**

Stable Low trajectories: Always far apart. Things that make noise e.g. 'drums of love'.

Stable High Trajectories have a **consistently high cossim**. These collocations have remained unchanged since the Baroque period: 'love is fidelity', 'love is friendship', or 'love is lust'. These are conventional near-synonyms. A k-nearestneighbor (KNN) analysis retrieves these collocations.

To discover emerging tropes, we calculate cosine similarity of 'love' against every other word over time.

Principal Component Analysis (PCA) over the resulting trajectories show: similar trajectories are co-variant. Component 1 (73%) aggregates stable high/low trajectories, while component 2 (13%) aggregates rising/falling trajectories. Plotted are top 25 word pairs per dimension (two per component).

Emerging Tropes

Rising trajectories emerge during the Romantic period, i.e. 'fresh love', 'love is magic / enchantment' and 'love is violets'. A metaphorical (trope) interpretation is most likely here.

Figure 1: Distribution of stanzas in 50 year slots, 1575–1925 AD. Period labels: Barock (baroque), Aufklärung (enlightenment), Empfindsamkeit (sentimentalism), Klassik (Weimar classicism), Frühromantik (early romantic), Spätromantik (late romantic), Moderne (modernity).

- Largest dataset of New High German poetry to date (consistency from Baroque to Modernity)
- 75k poems (texts), 11M words, 1575 – 1936 A.D.
- Time stamps mostly accurate. If not: average year b/w author birth \& death
- Documents are stanzas (for poetic tropes, words are likely to stand in local context)
- Includes most of the literary canon But far from complete: Half of Rilke's work is missing
- Includes other languages than New High German (Middle German, Dutch, French, Latin) that need to be filtered

Falling trajectories fall into **obscurity**: We find 'cheap love', 'raking' or 'manners / accounting'.

 Lemmatization based on a gold token: lemma mapping from DTA + germalemma

 Compiled from (1) Textgrid (51k poems), (2) The German Text Archive DTA (28k poems), and (3) Antikoerperchen (ANTI-K, 150 poems, school canon).

Contact Thomas Haider thomas.haider@ae.mpg.de | github.com/thomasnikolaushaider

Acknowledgement

Thanks to Sarah Brendecke for helping with the poster. Thanks to the MPIEA for funding this work.

References

- + Thomas N. Haider. 2019. Diachronic Topics in New High German Poetry, DH2019 Utrecht
- + David Bamman, Chris Dyer, and Noah A Smith. 2014. Distributed representations of geographically situated language. ACL
- + Steffen Eger and Alexander Mehler. 2016. On the linearity of semantic change: Investigating meaning variation via dynamic graph models. ACL.

+ Aurélie Herbelot. 2014. The semantics of poetry: a distributional reading. Digital Scholarship in the Humanities (DSH).

- + Ted Underwood and Jordan Sellers. 2012. The emergence of literary diction. The Journal of Digital Humanities
- + Phil Roberts. 2000. How Poetry Works. Penguin UK.

